首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The replacement of expensive propylene by propane, which requires the development of catalysts for the direct oxidation of propane into acrylonitrile, is an important and insufficiently studied problem. Multicomponent Mo m V n Te k Nb x oxide systems are promising in one-stage ammoxidation of propane to acrylonitrile. Despite considerable attention of various authors to the preparation methods for these catalysts, the reproducibility of their physicochemical and catalytic properties is low. To optimize the technology of catalyst synthesis, we studied the effect of drying method (evaporation or spray drying) for the aqueous suspension of the initial compounds on the formation of the Mo1V0.3Te0.23(Nb0.12) oxide catalyst. It is shown that the method of drying determines the chemical and phase composition of solid catalyst precursors and the phase composition of the final catalyst in high-temperature treatment. The use of spray drying provides the required physicochemical characteristics of the catalyst (the specific surface area and the phase composition) that determine the high activity and selectivity in the selective conversion of propane. These catalysts contain two crystalline phases: orthorhombic M1 and hexagonal M2 in an optimal ratio of 3: 1.  相似文献   

2.
It is known that the addition of Li2O to 33.3BaO-66.7SiO2 glass, whose composition is the same as BaSi2O5, promotes crystallization of BaSi2O5. In this study, in order to clarify the effect of a smaller amount of Li2O, xLi2O-(30-x)BaO-70SiO2[mol%] (x = 0, 0.2, 0.5) glasses were prepared. The main crystalline phases in the heat treatments near the maximum crystallization peak temperature, were high-BaSi2O5 and low-BaSi2O5 which transformed from high-BaSi2O5. It is found that the introduction of only 0.2 mol% and 0.5 mol% Li2O significantly changes the crystallization behavior. In the composition without Li2O, only high-BaSi2O5 was formed after heat treatment even for 24 h. For compositions containing Li2O, low-BaSi2O5 was formed within 1 h of heat treatment. In these compositions, it is found that the addition of Li2O enhances phase separation in the early stage of heat treatment, resulting in the formation of Si-rich droplet phases and Ba-rich phases. The composition of the Ba rich glass phase would be close to the stoichiometric composition of BaSi2O5, suggesting a significant change in crystallization behavior.  相似文献   

3.
In this study, we report the synthesis of SrCo1?xRuxO3?δ nominal compositions, where x = 0.0‐1.0, using solid‐state reaction technique. XRD analysis confirms the structure of x = 0 sample as hexagonal Sr6Co5O15. As the Co ions are substituted by Ru, a two‐phase structure (hexagonal R32 and orthorhombic Pbnm) emerges up to x ≤ 0.5. As the Ru content is increased further, the hexagonal R32 phase disappears completely and an orthorhombic Pbnm phase becomes the main phase. SEM images show that grain size of the samples decreases with increasing Ru content. Temperature‐dependent electrical conductivity studies indicate upon Ru substitution in the nominal SrCo1?xRuxO3?δ compounds, resistivity decreases due to appearance of metallic SrRuO3 phase. The cyclic voltammogram (CV) of the samples show capacitive properties upon Ru substitution. The cycle measurements of the capacitors yield promising results for potential supercapacitor applications.  相似文献   

4.
Materials based on CeO2-La2O3 system are promising candidates for a wide range of applications, but the phase relationship has not been studied systematically previously. To address this challenge, the subsection of the phase diagram for 1100 and 1500 °C have been elucidated. Samples of different compositions have been prepared from nitrate acid solutions using conventional ceramic techniques; evaporation, drying, and calcinations. The phase relations in the binary CeO2-La2O3 system at 1100-1500 °C were studied from the heat treated samples using X-ray diffraction analysis, petrographic investigation and scanning electron microscopy in the overall concentration range. It was established that in the binary CeO2-La2O3 system there exist fields of solid solutions based on hexagonal (A) modification of La2O3, and cubic modification of CeO2 with fluorite-type structure (F). The systematic study that covered whole composition range excluded formation of new phases. The refined lattice parameter of the unit cell and the boundaries of the homogeneity fields for solid solutions were determined.  相似文献   

5.
Lithium manganese oxide (LiMn2O4) has been synthesized by a spray pyrolysis method from the precursor solution; LiNO3 and Mn(NO3)2·6H2O were stoichiometrically dissolved into distilled water. The synthesized LiMn2O4 particles exhibited a pure cubic spinel structure in the X-ray diffraction (XRD) patterns, however they were spherical hollow spheres for various concentrations of precursor solution. Thus, the as-prepared LiMn2O4 particles were then ground in a mortar and dispersed into distilled water. To make a well dispersed slurry solution, a dispersion agent was also added into the slurry solution. The LiMn2O4 microparticles with a spherical nanostructure were finally prepared by a spray drying method from the slurry solution. The tap density of the LiMn2O4 microparticle prepared by a combination of spray pyrolysis and drying method was larger than that by a conventional spray pyrolysis method.The as-prepared samples were sintered at 750 °C for 1 h in air and used as cathode active materials for lithium batteries. Test experiments in the electrochemical cell Li|1 M LiClO4 in EC:DEC = 1:1|LiMn2O4 demonstrate that the sample prepared by the present method is a promising cathode active material for 4 V lithium-ion batteries at high-charge-discharge and elevated temperature operation. The LiMn2O4 compounds by the combination of spray pyrolysis and drying method are superior to that by the conventional spray pyrolysis method in terms of electrochemical characteristics and tap density.  相似文献   

6.
A series of new Cu–Co–Fe compounds with the general formula Cu x Co2−x Fe1HT (x = 0, 0.5, 1, 1.5 and 2) has been prepared by hydrotalcite coprecipitation method. The presence of hydrotalcite phase is revealed by XRD analysis for x values of 0, 0.5 and 1. When the copper quantity is higher than 1, the malachite phase is preferentially formed. These results are confirmed by TG-DTA, FT-IR and XPS analysis. After calcination at 500 °C in air of all samples, XRD analysis reveals the presence of spinel phases such as Co3O4, CoFe2O4, CuFe2O4, Cu x Co y O4 in the solids, monoclinic CuO phase when the copper content is greater or equal to 1 and haematite phase for the sample where x is equal to 2. The presence of these phases is also confirmed by XPS results. For comparison, a Co2Fe1OH sample has been synthesized by classical coprecipitation method and although Co2Fe1HT sample and Co2Fe1OH form a similar phase after calcination at 500 °C, Co2Fe1HT500 presents a higher BET value than Co2Fe1OH500 sample.  相似文献   

7.
AlPO-5 molecular sieves were prepared by the hydrothermal reaction of a gel mixture with the following compositions: Al2O3 : P2O5 : Et3N : H2O = 1:1:1.5:x, where x is between 100 and 750 H2O molar ratio. The structure and morphology of the AlPO-5 molecular sieves depend on the gel mixture's composition, hydrothermal temperature, hydrothermal reaction time, and pH. Without pH control, the AlPO-5 structure changed from a spherical shape at H2O = 100 to a hexagonal pillar shape at H2O = 450. With pH control in the range of about 2.5-3.5, the hexagonal pillar crystals began to form at H2O = 100 and an island of hexagonal pillars with radiation form appeared at H2O = 300-450 due to the formation of a tridymite type of dense AlPO4 phase. It appears that the formation rate of hexagonal pillar crystals to form a dense AlPO4 phase is favorable under acidic conditions, and an amorphous AlPO-5 structure forms under basic conditions. Thus, the H2O concentration and pH value have a dramatic effect on the AlPO-5 structure.  相似文献   

8.
9.
Four MgO‐Ta2O5 ceramics with the MgO/Ta2O5 mole ratio x = 1, 2, 3, and 4 were prepared by traditional solid‐state reaction method, and the influence of x on the phase composition, microstructure, and dielectric properties (the dielectric constant εr, the temperature coefficient of resonant frequency τf and the quality factor Qf) of the materials was investigated using XRD, SEM, etc. The results indicated that the ceramics were composed of two crystalline phases MgTa2O6 and Mg4Ta2O9 in the composition range studied, and that the dielectric properties ln ε, 1/Qf, and τf changed proportionally to the fraction of main crystal phases, which meet perfectly with the mixing model proposed in this study. It is obvious that the proportion of the two crystal phases could be precisely controlled by x, and thereby, the dielectric properties can be conveniently and precisely tailored. Our research provided a new microwave dielectric ceramic with the composition of 2MgO‐Ta2O5, which has an ultrahigh Qf value (211 000 GHz), low dielectric constant εr (19.9), and near zero temperature coefficient of resonant frequency τf (8 ppm/°C).  相似文献   

10.
Glass compositions in the system 40SiO2–30BaO–20ZnO–(x)Mn2O3–(10 − x)B2O3 glasses have been synthesized and the thermal, structural and crystallization kinetic properties characterized. The lower concentration of Mn2O3 in place of B2O3 acts as a network former and suppressed the tendency of phase separation in glasses. On the other hand, concentration of Mn2O3 > 7.5 mol% induce phase separation in the glass matrix. The highest activation energy for crystallization is observed in the composition without B2O3 (INM4) (355 kJ/mol). The values of thermal expansion coefficient (TEC) and viscosity of this glass is 8 × 10−6 K−1 and 104.2dPa s (850 °C), respectively. After long heat treatment (800 °C for 100 h), thermodynamically stable hexacelsian and monoclinic phases are formed. These phases are not detrimental to SOFC application.  相似文献   

11.
Anode materials for lithium-ion batteries based on iron oxides were synthesized using two different methods: a Low External Temperature Method (LETM) and a conventional Solid State Reaction Method (SSRM). Both methods lead to the formation of final products representing a mixture of two phases: approximately 75% LiFeO2 and 25% Lix Fe5O8 (0  <  x ≤ 0.1). When compared with the ordinary solid state synthesis, LETM creates conditions for carrying out the synthesis at a lower external calcination temperature (200 °C) over a shorter period. The properties of the Li x Fe y O z obtained by the LETM were compared with those of the same compound obtained by SSR at 700 °C. Higher initial discharge capacity was displayed by the sample synthesized by the SSR method, while a superior cycling stability was shown by the sample synthesized by the LETM. The latter shows approximately double capacity at the 30th cycle as compared with the sample synthesized by SSRM.  相似文献   

12.
A series of compositions with general stoichiometry Ca1?xZr1?xNd2xTi2O7 has been prepared by high‐temperature solid‐state reaction of component oxides and characterized by powder X‐ray diffraction and electron probe for microanalyses (EPMA). The phase fields in CaZrTi2O7–Nd2Ti2O7 system and distribution of ions in different phases have been determined. Four different phase fields, namely monoclinic zirconolite, cubic perovskite, cubic pyrochlore, and monoclinic Nd2Ti2O7 structure types are observed in this system. The 4M‐polytype of zirconolite structure is stabilized by substitution of Nd3+ ion. The addition of Nd3+ ions form a cubic perovskite structure‐type phase and thus observed in all the compositions with 0.05 ≤ x ≤ 0.80. Cubic pyrochlore structure‐type phase is observed as a coexisting phase in the nominal composition with 0.20 ≤ x ≤ 0.90. Only a subtle amounts of Ca2+ and Zr4+ are incorporated into the perovskite‐type Nd2Ti2O7 structure. EPMA analyses on different coexisting phases revealed that the pyrochlore and perovskite phases have Nd3+‐rich compositions.  相似文献   

13.
An aqueous sol–gel method was used for the preparation of bulk Y3Al5–xFexO12 (yttrium aluminum–iron garnet, YAIG) with the composition of x?=?0.0, 1.0, 2.0, 2.5, 3.0, 4.0, 5.0 and thin films with the composition of x?=?0, 3.0, 4.0, 5.0. The dip-coating technique was used for the preparation of Y3Al5–xFexO12 films on a silicon (Si) substrate. The phase composition and surface morphology of both bulk and coatings were determined and compared. The synthesized powder samples were investigated by X-ray diffraction analysis, infrared spectroscopy, scanning electron microscopy, and Mössbauer spectroscopy. The data provide evidence that some sol–gel-derived powder specimens consist of magnetically ordered component, while others show paramagnetic behavior depending on the composition of the product. It was also shown that sol–gel processing route could be successfully used for the preparation of mixed-metal YAIG thin films.  相似文献   

14.
Nanostructured GdPO4 thermal barrier coatings (TBCs) were prepared by air plasma spraying, and their phase structure evolution and microstructure variation due to calcium–magnesium–alumina–silicate (CMAS) attack have been investigated. The chemical composition of the coating is close to that of the agglomerated particles used for thermal spraying. Nanozones with porous structure are embedded in the coating microstructure, with a percentage of ~30%. CMAS corrosion tests indicated that nanostructured GdPO4 coating is highly resistant to penetration by molten CMAS at 1250°C. Within 1 hour heat treatment duration, a continuous dense reaction layer forms on the coating surface, which are composed of P–Si apatite based on Ca2+xGd8?x(PO4)x(SiO4)6?xO2, anorthite and spinel phases. This layer provides effective prevention against CMAS further infiltration into the coating. Prolonged heat treatment densifies the reaction layer but does not change its phase composition.  相似文献   

15.
The synthesis of pure bismuth molybdates (α, β and γ phases) using a novel method — spray drying — has been studied and successfully applied. It is shown that it is possible to control the synthesis of mixtures of different bismuth molybdates using spray drying. The influence of the relative molar ratio of bismuth to molybdenum constituents on the formation of different bismuth molybdate phases has been investigated. Starting from spray‐dried precursors, thermal details of the phase diagram of the Bi2O3‐MoO3 system can be accurately reproduced and very pure phases can be easily obtained. Spray‐drying is compared to conventional precipitation and solid‐state reaction and the obtained products were characterized by XRD, IR, Raman, SEM, BET and DTA.  相似文献   

16.
The thermoelectric properties of calcium cobaltite deposits produced by the plasma spray process are investigated from room-temperature to 873 K. Synthesis of Ca3Co2O6 and Ca2Co2O5 powders were prepared by the solid-state reaction from CaO and CoOx starting powders. During their subsequent plasma spray Ca particles experience preferential evaporation within the plasma, resulting in a complex interplay among process conditions, stoichiometry, and resultant phases. The as-sprayed material predominantly contains amorphous and secondary phases. Upon annealing, the deposits show sensitivity to phase evolution and therefore thermoelectric properties. Through screening studies, optimal annealing conditions were identified which show a p-type Seebeck coefficient value of 180 μV K?1, electrical conductivity of 1.09 × 104 S m?1, thermal conductivity of 1.16 W m-1 K-1 at 873 K. The resultant figure of merit value reached 0.266 for this combination of processing and thermal treatment and is in line with data reported from other techniques for this system.  相似文献   

17.
The cubic phase mixed ionic-electronic conductor (Ba0.5Sr0.5)(Co0.8Fe0.2)O3−δ (BSCF) is well-known for its excellent oxygen ion conductivity and high catalytic activity. However, formation of secondary phases impedes oxygen ion transport and consequentially a widespread application of BSCF as oxygen transport membrane. B-cation substitution by 1, 3 and 10 at.% Y was employed in this work for stabilization of the cubic BSCF phase. Secondary phase formation was quantified on bulk and powder samples exposed to temperatures between 640 and 1100°C with annealing time up to 44 days. The phase composition, cation valence states, and chemical composition of all samples were analyzed by high-resolution analytical electron microscopic techniques. Y doping effectively suppresses the formation of Ban+1ConO3n+3(Co8O8) (n ≥ 2) and CoxOy phases which would otherwise act as nucleation centers for the highly undesirable hexagonal BSCF phase. This work validates for 10 at.% Y cation substitution perfect stabilization of the cubic BSCF phase at temperatures ≥800°C, while a negligible small volume fraction of the hexagonal BSCF phase was found at lower temperatures. A newly developed model describes the effect of Y doping on the formation of secondary phases and their effective suppression with increasing Y concentration.  相似文献   

18.
In this work, we prepare Ba1−xSrxTi0.9Mn.01O3-δ (x = 0.00, 0.01, 0.03, 0.05, and 0.07) ceramics by the mixed oxide method and study the relationship between phase transition and dielectric property of the ceramics. The phase of the samples transformed from a hexagonal phase to mixed phases due to the increase in Sr doping amount. The X-ray diffraction (XRD) profiles and Raman spectra of the samples also show the same phase transformation due to increasing Sr doping amount. The XRD pattern of the undoped sample indicates a single h-BaTiO3 phase with P63/mmc symmetric space group, while the samples with high Sr doping amounts have a mixed phase with t-BaTiO3 with P4mm symmetric space group. The scanning electron microscopy images show two types of BaTiO3 grains, which grew with increasing sintering temperature. With increasing Sr concentration, the K-values (relative dielectric constant) of the ceramics increased, while the Qxf values (the quality factor multiplied by frequency) decreased, which indicate that the microwave dielectric property is related to phase transformation.  相似文献   

19.
In this work, the electroless copper method with different reductant compositions (NaHSO3/Na2 S2O3·5H2O and Na2S2O3·5H2O) without sensitizing and activating, was used to deposit copper‐sulfide deposition on the polyacrylonitrile (PAN) surface for electromagnetic interference (EMI) shielding materials. The weak reductant, NaHSO3, in the electroless copper method was used to control the phase of copper‐sulfide deposition. The Cux(x=1–1.8)S was deposited on the PAN (CuxS‐PAN) by reductant composition (NaHSO3/Na2S2O3·5H2O) and the Cux(x=1–1.8)S deposition of CuxS‐PAN possesses three kinds of copper‐sulfide phases (CuS, Cu1.75S and Cu1.8S). However, the electroless copper with reductant was only Na2S2O3·5H2O (without weak reductant, NaHSO3), the hexagonal CuS deposition was plated on the PAN (CuS‐PAN) and increased the EMI shielding effectiveness of CuS‐PAN composites about 10–15 dB. In this study, the best EMI SE of CuS‐PAN and CuxS‐PAN composites were about 27–30 dB and 15–17 dB respectively, as the cupric ion concentration was 0.24 M. The volume resistivity of CuS‐PAN composite was about 1000 times lower than that of CuxS‐PAN composite and lowest volume resistivity of CuS‐PAN composites was 0.012 Ω cm, as the cupric ion concentration was 0.24 M. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

20.
《Ceramics International》2017,43(13):10231-10238
Ferrimagnetic nanoparticles of SrFe12−x(Mn0.5Sn0.5)xO19 was synthesis by controlling the effective processing parameters of sol-gel techniques. Microwave, magnetic properties and structure of nanosize, high purity sol-gel synthesized SrFe12−x(Mn0.5Sn0.5)xO19 hexaferrite ferrimagnetic nanoparticles were investigated by vector network analysis, vibrating sample magnetometry, EDS and XRD. 57Fe Mössbauer spectroscopy was employed to find the occupancy sites of incorporated cations. The position of manganese and tin in 12k sites caused reduction in coercivity and magnetization saturation. The values of coercivity and magnetization saturation show that superparamagnetism did not occur in the synthesized products. Results demonstrate that additions of manganese and tin to hexagonal ferrite enhance bandwidth and reflection loss. Such composition could be proposed as a suitable electromagnetic wave absorber in microwave frequencies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号