首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A 2-D model has been proposed to investigate the approximate estimation of the natural convection heat loss from modified cavity receiver of without insulation (WOI) and with insulation (WI) at the bottom of the aperture plane in our previous article. In this paper, a 3-D numerical model is presented to investigate the accurate estimation of natural convection heat loss from modified cavity receiver (WOI) of fuzzy focal solar dish concentrator. A comparison of 2-D and 3-D natural convection heat loss from a modified cavity receiver is carried out. A parametric study is carried out to develop separate Nusselt number correlations for 2-D and 3-D geometries of modified cavity receiver for estimation of convective heat loss from the receiver. The results show that the 2-D and 3-D are comparable only at higher angle of inclinations (60° ? β ? 90°) of the receiver. The present 3-D numerical model is compared with other well known cavity receiver models. The 3-D model can be used for accurate estimation of heat losses from solar dish collector, when compared with other well known models.  相似文献   

2.
    
The natural convection heat transfer from a horizontal cylinder with a uniform wall temperature in an infinite space was experimentally investigated. Infinite fringe interferograms of the cylinder heated from 295.15 to 355.15 K were recorded using the holographic interferometry technique. The temperature field around the cylinder was reconstructed based on phase difference recovery using a MATLAB code. The distributions of the local and average Nusselt numbers over the cylinder were then obtained. A correlation of the average Nusselt number was proposed for a Rayleigh number range of 2.7–6.0 × 104. The experimental results are in good agreement with previous correlations, with a deviation of ±10%. The holographic interferometry technique was found to be satisfactory and reliable for heat transfer analyses.  相似文献   

3.
    
The present investigation is on examination of the natural convection and entropy generation considering the heatlines visualization of nanofluid I-shaped enclosure with two corrugated walls considering inner rectangular heater of three different heights. The influence of Brownian motion along with thermophoresis had been implemented using Inhomogeneous two-phase model of nanofluid. The governing equations were solved numerically using COMSOL software. Influence of Rayleigh number , Buoyancy ratio number , Lewis number , heater length . The results indicate that the influence of Lewis number on heat transfer bettering is stronger at high Rayleigh number while its impact is negligible at a lower value of Rayleigh number (conduction mode). In addition, the total entropy generation gets its highest value at Lewis number . Bejan number, fluid flow strength and heat rate increase as the rectangular heater height increases. Also, higher heat transfer augmentation is taken when the heater height is while increasing the heater height to leads to more total entropy generation. The impact of heater height on total entropy generation is highly affected by Rayleigh number as increasing the heater height from into , total entropy generation increases by at while it increases by at .  相似文献   

4.
In some regions with a specific climate, summer comfort in the rooms located below the roof becomes critical if the roof system is not well designed. In order to analyze the efficiency of this system a numerical model was developed. This model is based on the study of the natural convection coupled with radiative heat transfer in an inclined air channel. The configuration studied is an inclined channel formed by two parallel plates. The upper and lower plates were maintained at fixed temperatures. The air flow in the channel which is due to the buoyancy forces is fully turbulent and the turbulence was modeled by using the k‐ε model. Some numerical results obtained were validated using the experimental works of Khedari and colleagues and those of Nouanégué and colleagues. The effect of physical and geometrical parameters and the radiative heat transfer on the channel behavior is shown. Correlations for Nusselt numbers and air flow rate were obtained as functions of the geometric parameters and the Rayleigh number. These correlations can be used in other models that represent this system.  相似文献   

5.
A numerical investigation of steady‐natural convection of an electrically conducting fluid, enclosed in a tilted square cavity, subjected to a uniform magnetic field applied perpendicular to the plane of cavity is presented. A comprehensive understanding of the effects of controlling parameters on the flow and heat transfer is delineated for a wide range of parameters. Correlations for the average Nusselt number are presented specifically for fluids with low Prandtl numbers pertaining to liquid metals. It is made known that when the applied magnetic field is perpendicular to the plane of the cavity, the magneto hydrodynamic drag is greatest as compared to any other direction of the applied magnetic field and consequently the suppression of convection is also at its maximum, irrespective of all other controlling parameters. 8 2010 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley Online Library ( wileyonlinelibrary.com ). DOI 10.1002/htj.20326  相似文献   

6.
    
In this study, the water convection flow within a right-angled, inclined, and isosceles triangle enclosure for various inclination angles was numerically analyzed using the lattice Boltzmann method with the multirelaxation time model. On the hypotenuse side, the enclosure is thermally insulated, while the left and horizontal walls are kept, respectively, at cold and hot temperatures. This study was conducted to show the effects of two key parameters, the tilt angle ϕ $phi $ and the Rayleigh number R a $Ra$ , whose changes span from 0 ${0}^{circ }$ to 31 5 $31{5}^{circ }$ and 5 × 1 0 3 $5times 1{0}^{3}$ to 1 0 6 $1{0}^{6}$ , respectively. The effect of these variables is presented in terms of streamlines, isotherms, velocity profiles, temperature plots, and the average Nusselt number. Furthermore, the impact of the size of a hot square obstruction inside the cavity on the isotherms and streamlines has been investigated. The findings demonstrate that the rate of heat transport is enhanced as the Rayleigh number increases. This result is in good agreement with earlier research without tilting the cavity. Depending on the Rayleigh number, the tilt angle has a significant effect on the rate of heat transmission.  相似文献   

7.
A new mixed nanofluid (Cu/diamond–gallium [Cu/diamond–Ga] nanofluid) is proposed, and the mass ratio of Cu nanoparticles and diamond nanoparticles in the new mixed nanofluid is 10:1. The natural convection heat transfer of Cu/diamond–Ga nanofluid, Cu–gallium (Cu–Ga) nanofluid, and liquid metal gallium with different volume fractions in a rectangular enclosure is investigated by a single‐phase model in this paper. The effects of temperature difference, nanoparticle volume fraction and the kinds of nanofluid on the natural convection heat transfer are discussed. The natural convection heat transfer of the three kinds of fluids is compared. It is found that Nusselt numbers of the Cu/diamond–Ga nanofluid along with X direction increases with the nanoparticle volume fraction and temperature difference. Cu/diamond–Ga nanofluid can enhance the heat transfer by 73.0% and 9.7% at low‐temperature difference (ΔT = 1 K) compared with liquid metal gallium and Cu–Ga nanofluid, respectively. It also can enhance the heat transfer by 85.9% and 5.2% at high‐temperature difference (ΔT = 11 K) compared with liquid metal gallium and Cu–Ga nanofluid, respectively.  相似文献   

8.
    
The article deals with the effect of longitudinal size and shape partition embedded within a differentially heated porous enclosure. The objective is to curtail the heat transfer rate across such porous enclosures by means of partitions embedded within. The partition shapes under consideration are straight vertical left-inclined, right-inclined, L-shaped, wavy, corrugated, and square-wave. It is sought to find the most effective combination of partition length and shape that could serve the required objective. Also, many times, due to the constructional constraints of the porous enclosure or cavity, using full-length partitions may not be feasible. In this regard, it is also sought to find the partition length that is to be maintained for achieving a significant reduction in heat transfer without much compromise. The results of the current study are useful for thermal design engineers particularly in the field of thermal insulation, solar heating application, and packed bed energy storage systems where the major challenge is to reduce the heat transfer across the system. The parameters under consideration are the longitudinal length L and Rayleigh number Ra. All the partitions under study are evaluated for bottom-wall and top-wall attached conditions. Some of the notable findings are that for smaller-sized partitions (B < 0.5), L-shaped partitions are most effective in controlling the convection heat transfer rate across the enclosure while for larger-sized partitions (L > 0.5), square-wave-shaped partitions should be preferred for effective reduction in the rate of convection heat transfer.  相似文献   

9.
    
Saltwater or brackish water is used as a coolant in most industries. Therefore, understanding the heat transfer processes and hydrodynamics during the natural convection in saline water is crucial for enhancing the efficiency of a heat exchanger. This study elaborates on the natural convection heat transfer in saline water under atmospheric conditions. A DC power supply is used to regulate the power given to the heater in a liquid pool for thermal analysis. The pool liquid comprises solutions with varying salinity from 0%, 0.2%, 0.5%, and 2%. The effect of varying salinity on the heat transfer coefficient and the thermal aspects encountered during the desalination process is analyzed. The temperature distribution across the surface of the heater is monitored using an infrared camera. It is studied for the solution of different salinities. The heat transfer coefficient and Nusselt number are investigated during natural convection for normal water and salt solution of different concentrations. It is inferred from the study that in the regime of natural convection, there is no significant difference in the Nusselt number for normal water and saltwater for the lower value of temperature difference between the plate and pool. The heat transfer coefficient in 0.2% saline water is higher as compared to the other solutions.  相似文献   

10.
    
The present study investigates the use of two air cavities thermal insulator in buildings. The two air cavities insulator structure is supposed to be located within the building's wall and roof forming two separated vertical and horizontal cavity, respectively. In addition, the wall cavity height (or roof cavity length), H, was investigated at H = 2, 3, 4, 5 m to find the influence of wall cavity height (or roof cavity length) on various thermal characteristics and thus to determine the thermal optimum thickness. At each wall cavity height (and roof cavity length), cavity thickness, Lc, was varied from 0.01 m to 0.1 m forming aspect ratio, AR = H/Lc ranges of 20 to 200, 30 to 300, 40 to 400, and 50 to 500 for H = 2, 3, 4, and 5 m, respectively. The present results reveal the presence of the first and second cavities in wall and roof at various thicknesses affecting the development of wall and roof components' surface temperature. In addition, varying the wall cavity height or roof cavity length has further significant effects on the development of these surface temperatures. Moreover, it was found that increasing the wall cavity height leads to increasing the optimum wall cavity thickness, Lc = 0.024, 0.027, 0.029, and 0.031 m at cavity height, H = 2, 3, 4, and 5 m, respectively, whereas in the roof cavity case, the optimum roof cavity thickness seems to reach its asymptotic value at about 0.019 m for the roof cavity length investigated, H = 2, 3, 4, and 5 m despite the optimum wall cavity thickness that was not.  相似文献   

11.
    
A theoretical and numerical study of natural convection of two‐dimensional laminar incompressible flow in a semi‐trapezoidal porous enclosure in the presence of thermal radiation is conducted. The semi‐trapezoidal enclosure has an inclined left wall that in addition to the right vertical wall is maintained at a constant temperature, whereas the remaining (horizontal) walls are adiabatic. The Darcy‐Brinkman isotropic model is utilized. The governing partial differential equations are transformed using a vorticity stream function and nondimensional quantities and the resulting governing nonlinear dimensionless equations are solved using the finite difference method with incremental steps. The impacts of the different model parameters (Rayleigh number [Ra], Darcy number [Da], and radiation parameter [Rd]) on the thermofluid characteristics are studied in detail. The computations show that convective heat transfer is enhanced with the greater Darcy parameter (permeability). The flow is accelerated with the increasing buoyancy effect (Rayleigh number) and heat transfer is also increased with a greater radiative flux. The present numerical simulations are more relevant to hybrid porous media solar collectors.  相似文献   

12.
含加热圆管方腔内自然对流的数值研究   总被引:2,自引:0,他引:2  
采用数值计算方法对含不同直径圆管以及相同直径圆管位置不同方腔内的层流自然对流进行了研究。以冷热壁面温度差为基准的瑞利数Rn为10^6,以圆管壁面热流密度为基准的Ra为10^8。计算结果表明,当圆管处于方腔中间位置时,随着圆管直径的增大,圆管表面局部努塞尔数呈减小趋势。当圆管直径不变时,由于在不同位置处浮力作用的强弱不同,随着圆管在方腔内位置的改变,方腔内流场结构和温度场分布也会发生变化。整个计算结果可为工程设计提供参考。  相似文献   

13.
A two dimensional model of the transient natural convection in a freezer is studied numerically by finite volume approach. The temperatures of the freezer outside surfaces and the evaporator vary in specified manners, which were taken from an experimental work. The fluid in the freezer is of the Bousinnesq type and the flow is assumed laminar. The transient heat conduction in the insulating layers and the temperature and velocity fields of the fluid are solved conjugately. The radiation heat transfer between the freezer inner surfaces is taken into account by using the additional source term method. The distributions of the local Nusselt number along the upper and lower surfaces of the evaporator and their average values in the period of periodically unsteady operation are calculated. Comparisons are made between the results with and without consideration of inner surface radiative heat transfer. It is found that the radiative heat transfer between the inner surfaces has a profound effect on the evaporator heat transfer characteristics.  相似文献   

14.
    
Natural convection of power‐law fluids over a horizontal flat plate with constant heat flux is studied. The stretching transformations relating the similarity forms of the boundary layer velocity, pressure, and temperature profiles are applied to the governing boundary layer equations. The resultant set of coupled ordinary differential equations are solved analytically and numerically using the integral method and the finite difference method, respectively. The results are presented for the details of the velocity and temperature fields for various values of the non‐Newtonian power‐law viscosity index (n) and the generalized Prandtl number (Pr*). At a fixed value of the viscosity index, increasing the Prandtl number increases the skin friction and wall temperature. For Pr* > 1, a lower viscosity index results in larger wall skin friction, temperature scale, and thermal boundary layer thickness, and thus lower Nusselt number. The reverse trend is observed for Pr* < 1. By using an integral solution and the numerical results, a semi‐analytical correlation for the Nusselt number is obtained, valid for and .  相似文献   

15.
    
In the current study, multiobjective optimization and numerical simulation were used to evaluate free convection through a nonuniform cabinet, which has several technical applications, such as cooling techniques, solar air collectors, and heat sinks. The new aspect of the current study is to compute the maximum free convection within an irregular L-shaped cavity filled with porous media using both computational analysis and response surface methodology (RSM). Moreover, the impacts of constant coefficients, such as aspect ratios of the horizontal (ARh), vertical (ARv), and Darcy numbers (Da) on the Nusselt number (Nuave), Nusselt number maximization (NNM), the temperature of the surface (Ts), and entropy (S) are studied and discussed to evaluate their effect on the thermal performance. The results showed that when Da, ARh, and ARv increase, Nuave improves while the Ts and S decline and the largest desirability is achieved at ARh = 0.9, ARv = 0.9, and Da = 10−1. Additionally, when compared with the subpar design data, the largest gain in NNM was 26.7 times, while the biggest decreases in surface temperature and entropy were 59% and 97%, respectively. As a result, the combination of the numerical simulation and RSM study produces a novel strategy and insightful suggestions for the ideal cooling L-shaped cabinet design.  相似文献   

16.
In this study, the effect of ceiling and floor surface temperatures and room dimensions on the Nusselt number over the floor of a floor heating system has been investigated numerically. The variation of the Nusselt number with Rayleigh number has been analyzed under constant wall temperature condition for different ceiling temperatures (10–25 °C) and room dimensions. It has been seen that when the room dimensions and temperature difference between the ceiling and interior air are increased, the Nusselt number over the floor increases as well. The numerical results have been compared with the correlations given in the literature. It has been seen that the correlations available in the literature are valid only for given thermal conditions and room dimensions. The results calculated from the correlations which do not consider the effects of ceiling and floor surface temperatures deviate up to 35% than the results of this numerical study carried out for different ceiling and floor surface temperatures and room dimensions. Therefore, a new correlation for Nusselt number over the floor, which contain the influence of thermal conditions and all of room dimensions must be discovered.  相似文献   

17.
Heat sinks are widely used to remove the heat from the microelectronic devices including Pentium and AMD processors. In the present study, four different types of heat sink have been used i.e. Pentiums III and IV, AMD Athlon and Duron heat sinks; in order to analyze their performance. The paper presents the comparison of heat sinks of Pentium and AMD families. The simulation and experimental investigations have been made at different Reynolds numbers. The Fluent 6.2 software which is a computational fluid dynamics (CFD) code has been used in the simulation to predict the temperature and the flow fields. The experiments have been carried out by using an air chamber with nozzle at different Reynolds numbers. The Nusselt number and temperature distributions have been plotted against Reynolds number for all heat sinks. The simulation results obtained are found in satisfactory agreement with the experimental results.  相似文献   

18.
    
A numerical study of fluid flow and heat transfer, applying natural convection is carried out in a porous corrugated rhombic enclosure. A uniform heating source is applied from the bottom boundary wall while the inclined side walls are maintained to a constant cold temperature and the top corrugated wall is retained at insulated condition inside the enclosure. The heat transfer and flow features are presented for a wide spectrum of Rayleigh numbers (Ra), 104 ≤ Ra ≤ 106, and Darcy numbers (Da), 10?3 ≤ Da ≤ 10?2. The number of undulations (n) for the top and bottom walls have been varied from 1 to 13 keeping the amplitude of undulation fixed. It is revealed that the characteristics of heat transfer are conceivably modulated by changing the parameter of the undulation number on the enclosure walls, specifically at the bottom and top. The influencing control of n in altering the heat transfer rate is felt maximum on the left wall and minimum for the right wall, and there is a strong interplay between Ra and Da together with n on dictating the heat transfer characteristics. The critical value, where heat transfer rate is observed as maximum is at n = 11 and thereafter the values decrease.  相似文献   

19.
A numerical analysis is carried out to study the performance of natural convection inside a square open tilted cavity filled with air. An adiabatic circular solid cylinder is placed at the center of the cavity and the sidewall in front of the breathing space is heated by a constant heat flux. The top and bottom walls are kept at the ambient constant temperature. Two‐dimensional forms of Navier–Stokes equations along with the energy equations are solved using the Galerkin finite element method. Results are obtained for a range of Grashof numbers from 103 to 106 at Pr = 0.71 while the tilt angle varies from 0 to 45° and the diameter ratio of the cylinder is considered to be 0.2, 0.3, and 0.4 with constant physical properties. The parametric studies for a wide range of cylinder diameter ratios and cavity tilt angles show significant features of the present problem in terms of stream functions and temperature profiles. The computational results indicate that the heat transfer coefficient is strongly influenced by the above governing parameters. It is also found that the average Nusselt number decreases when the diameter ratio increases. © 2012 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley Online Library ( wileyonlinelibrary.com/journal/htj ). DOI 10.1002/htj.21001  相似文献   

20.
Natural convection heat transfer in partially open inclined square cavities   总被引:1,自引:0,他引:1  
A numerical study has been carried out on inclined partially open square cavities, which are formed by adiabatic walls and a partial opening. The surface of the wall inside the cavity facing the partial opening is isothermal. Steady-state heat transfer by laminar natural convection in a two dimensional partially open cavity is studied by numerically solving equations of mass, momentum and energy. Streamlines and isotherms are produced, heat and mass transfer is calculated. A parametric study is carried out using following parameters: Rayleigh number from 103 to 106, dimensionless aperture size from 0.25 to 0.75, aperture position at high, center and low, and inclination of the opening from 0° (facing upward) to 120° (facing 30° downward). It is found that the volume flow rate and Nusselt number are an increasing function of Rayleigh number, aperture size and generally aperture position. Other parameters being constant, Nusselt number is a non-linear function of the inclination angle. Depending on the application, heat transfer can be maximized or minimized by selecting appropriate parameters, namely aperture size, aperture position and inclination angle at a given operation Rayleigh number.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号