首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
赵郁炜  朱红卫 《微电子学》2014,(5):587-591,596
提出了一种10位200 MHz高速流水线型模数转换器。该转换器共有9级,其中1到8级采用1.5位每级结构,最后一级采用2位闪速型模数转换器结构。设计中使用带增益自举的套筒式共源共栅运放,可同时获得高增益和大带宽,并通过运放共享技术提高工作速度。采用改进的数字校正算法,将运算分配到数字码的延迟步骤中,减少运算时间。仿真结果显示,在192 MHz的采样速度下,模数转换器的有效位为8.9,SNR为58.3 dB,SFDR为62.8 dB,其他动态和静态特性也达到了较好的指标。  相似文献   

2.
A comparator-based switched-capacitor circuit (CBSC) technique is presented for the design of analog and mixed-signal circuits in scaled CMOS technologies. The technique involves replacing the operational amplifier in a standard switched-capacitor circuit with a comparator and a current source. During charge transfer, the comparator detects the virtual ground condition in place of the opamp which normally forces the virtual ground condition. A prototype 1.5-bit/stage 10-bit 7.9-MS/s pipeline ADC was designed using the comparator-based switched-capacitor technique. The prototype ADC was implemented in 0.18-mum CMOS. It achieves an ENOB of 8.6 bits for a 3.8-MHz input signal and dissipates 2.5 mW  相似文献   

3.
实现了一个10位精度,30MS/s,1.2V电源电压流水线A/D转换器,通过采用运放共享技术和动态比较器,大大降低了电路的功耗。为了在低电源电压下获得较大的摆幅,设计了一个采用新颖频率补偿方法的两级运放,并深入分析了该运放的频率特性。同时还采用了一个新的偏置电路给运放提供稳定且精确的偏置。在30MHz采样时钟,0.5MHz输入信号下测试,可以得到8.1bit有效位的输出,当输入频率上升到60MHz(四倍奈奎斯特频率)时,仍然有7.9bit有效位。电路积分非线性的最大值为1.98LSB,微分非线性的最大值为0.7LSB。电路采用0.13μmCMOS工艺流片验证,芯片面积为1.12mm2,功耗仅为14.4mW。  相似文献   

4.
55-mW 200-MSPS 10-bit pipeline ADCs for wireless receivers   总被引:1,自引:0,他引:1  
A new power reduction technique for analog-to-digital converters (ADCs) is proposed in this paper. The power reduction technique is a kind of amplifier sharing technique and it is suitable for ADCs in a wireless receiver. A test chip, which contains two ADCs, is fabricated in 90-nm 1-poly 7-metal CMOS technology. The 10-bit ADC dissipates 55 mW from 1.2-V supply, when the ADC operates at 200 mega-samples per second (MSPS). The 10-bit, 200-MSPS ADCs achieve maximum differential nonlinearity (DNL) of 0.66 least significant bit (LSB), maximum integral nonlinearity (INL) of 1.00 LSB, a spurious-free dynamic range (SFDR) of 66.5 dB and a peak signal-to-noise plus distortion ratio (SNDR) of 54.4 dB that corresponds to 8.7 effective number of bits (ENOB). The active area is 1.8 mm /spl times/ 1.4 mm.  相似文献   

5.
A set of low-power techniques is proposed to realize low power design in pipeline analog-to-digital converter (ADC). These techniques include removing the active S/H (i.e., SHA-less), sharing the opamp between the adjacent multi-bit-per-stages, low-power high-efficiency high-swing amplifier technique. Also, a new sampling topology is proposed to minimize aperture error by matching the time constant between the two input signal paths. All these skills are verified by simulation in the design of the 1.8-V 11-bit 40-MHz ADC in a 0.18-μm CMOS process with power dissipation 21-mW, signal-to-noise-and-distortion ratio (SNDR) 65-dB, effective number of bit (ENOB) 10.5-bit, spurious free dynamic range (SFDR) 78-dB, total harmonic distortion (THD) −75.4-dB, signal-to-noise ratio (SNR) 65.4-dB and figure-of-merit (FOM) 0.18 pJ/step.  相似文献   

6.
介绍了12 bit,10 MS/s流水线结构的模数转换器IP核设计。为了实现低功耗,在采样电容和运放逐级缩减的基础上,电路设计中还采用了没有传统前端采样保持放大器的第一级流水线结构,并且采用了运放共享技术。瞬态噪声的仿真结果表明,在10 MHz采样率和295 kHz输入信号频率下,由该方法设计的ADC可以达到92.56 dB的无杂散动态范围,72.97 dB的信号噪声失调比,相当于11.83个有效位数,并且在5 V供电电压下的功耗仅为44.5 mW。  相似文献   

7.
This paper presents a low-power low-voltage 10-bit 100-MSample/s pipeline analog-to-digital converter (ADC) using capacitance coupling techniques. A capacitance coupling sample-and-hold stage achieves high SFDR with 1.0-V supply voltage at a high sampling rate. A capacitance coupling folded-cascode amplifier effectively saves the power consumption of the gain stages of the ADC in a 90-nm digital CMOS technology. The SNDR and the SFDR are 55.3 dB and 71.5 dB, respectively, and the power consumption is 33 mW  相似文献   

8.
This paper describes a 14-bit digitally background calibrated pipeline analog-to-digital converter (ADC) implemented in a mainstream 130-nm CMOS technology. The proposed calibration technique linearizes the digital output to correct for errors resulting from capacitor mismatch, finite amplifier gain, voltage reference errors and differential offsets. The software-based calibration technique requires quite modest digital resources and its estimated dynamic power is under 1 % of the ADC power consumption. After calibration, the 14-bit ADC achieves a measured peak Signal-to-Noise-plus-Distortion-Ratio of 71.1 dB at 100 MS/s sampling rate. The worst-case integral nonlinearity is improved from 32.9 down to 4 Least-Significant-Bits after calibration. The chip occupies an active area of 1.25 mm2 and the core ADC (S/H+analog+digital power) consumes 105 mW. The Figure-of-Merit is 360 fJ per conversion-step.  相似文献   

9.
A pipelined analog-to-digital converter (ADC) architecture which is suitable for low power and small area is presented. The prototype ADC achieves 10-bit resolution with only two opamps by removing a front-end sample-and-hold amplifier (SHA) and sharing an opamp between two successive pipeline stages. The errors from the absence of SHA and opamp-sharing are greatly reduced by the proposed techniques and circuits. Further reduction of power and area is achieved by using a capacitor-sharing technique and variable- $g_{m}$ opamp. The ADC is implemented in 0.18 $muhbox{m}$ CMOS technology and occupies a die area of 0.86 ${hbox{mm}}^{2}$. The differential and integral nonlinearity of the ADC are less than 0.39 LSB and 0.81 LSB, respectively, at full sampling rate. The ADC achieves 56.2 dB signal-to-noise plus distortion ratio, 72.7 dB spurious free dynamic range, ${-}$66.2 $~$dB total harmonic distortion, 9.03 effective number of bits for a Nyquist input at full sampling rate, and consumes 12 mW from a 1.8 V supply.   相似文献   

10.
A systematic design approach for low-power 10-bit, 100 MS/s pipelined analog-to-digital converter (ADC) is presented. At architectural level various per-stage-resolution are analyzed and most suitable architecture is selected for designing 10-bit, 100 MS/s pipeline ADC. At Circuit level a modified wide-bandwidth and high-gain two-stage operational transconductance amplifier (OTA) proposed in this work is used in track-and-hold amplifier (THA) and multiplying digital-to-analog converter (MDAC) sections, to reduce power consumption and thermal noise contribution by the ADC. The signal swing of the analog functional blocks (THA and MDAC sections) is allowed to exceed the supply voltage (1.8 V), which further increases the dynamic range of the circuit. Charge-sharing comparator is proposed in this work, which reduces the dynamic power dissipation and kickback noise of the comparator circuit. The bootstrap technique and bottom plate sampling technique is employed in THA and MDAC sections to reduce the nonlinearity error associated with the input signal resulting in a signal-to-noise-distortion ratio of 58.72/57.57 dB at 2 MHz/Nyquist frequency, respectively. The maximum differential nonlinearity (DNL) is +0.6167/−0.3151 LSB and the maximum integral nonlinearity (INL) is +0.4271/−0.4712 LSB. The dynamic range of the ADC is 58.72 dB for full-scale input signal at 2 MHz input frequency. The ADC consumes 52.6 mW at 100 MS/s sampling rate. The circuit is implemented using UMC-180 nm digital CMOS technology.  相似文献   

11.
李霄  李潇然  张浩  杨佳衡  张蕾 《微电子学》2022,52(4):603-607
基于180 nm CMOS工艺,设计了一种无残差放大的10位100 MS/s流水线与逐次逼近混合型ADC。采用两级流水线-逐次逼近混合型结构,第一级完成4位粗量化转换,第二级完成6位细量化转换。为了降低整体电路功耗,采用单调式电容控制切换方式,两级之间残差电压采用采样开关电荷共享方式实现。采用异步时序控制逻辑,进一步提升了能量利用率和转换速度。后仿真结果表明,在100 MS/s奈奎斯特采样率下,有效位数为9.39 bit,信噪失真比为58.34 dB,1.8 V电源电压下整体功耗为5.9 mW。  相似文献   

12.
A 14-b 100-MS/s Pipelined ADC With a Merged SHA and First MDAC   总被引:2,自引:0,他引:2  
A low-power 14-b 100-MS/s analog-to-digital converter (ADC) is described. The prototype ADC achieves low-power consumption and small die area by sharing an opamp between two successive pipeline stages. Further reduction of power and area is achieved by completely merging the front-end sample-and-hold amplifier (SHA) into the first multiplying digital-to-analog converter (MDAC) using the proposed opamp and capacitor sharing technique. The ADC, implemented in a 0.18-$mu$m dual-gate-oxide (DGO) CMOS technology, achieves 72.4-dB signal-to-noise and distortion ratio, 88.5-dB spurious free dynamic range, and 11.7 effective number of bits at full sampling rate with a 46-MHz input while consuming 230-mW from a 3-V supply.   相似文献   

13.
燕振华  李斌  吴朝晖 《微电子学》2016,46(5):595-598
提出了基于冗余子级的流水线ADC后端校准技术,采用精度较高的流水线冗余子级代替参考ADC,对流水线ADC的各个子级校准,替代了对整个ADC的校准,使校准系统无需降频同步,较好地解决了传统校准系统中主信号通路与参考ADC信号通路不同步的问题。对Matlab/Simulink中搭建的精度为16位、采样频率为10 MS/s的流水线ADC进行仿真,结果表明,当输入信号频率为4.760 5 MHz时,经过校准,流水线ADC的有效位和无杂散动态范围分别由9.37位和59.96 dB提高到15.32位和99.55 dB。进一步的FPGA硬件验证结果表明,流水线ADC的有效位和无杂散动态范围分别为12.73位和98.62 dB,初步验证了该校准算法的可行性。  相似文献   

14.
针对14位流水线A/D转换器中各级采样电容值的优化问题,提出了在系统模型中加入热噪声模型的方法。在14位流水线A/D转换器结构下,通过系统级仿真,得出采样保持放大器(SHA)的采样电容Cs必须大于10 pF,第一级余数放大器的采样电容必须大于2 pF,才能使有限的采样电容引起系统信噪比的衰减小于1 dB的结论。  相似文献   

15.
A global offset cancellation technique is proposed to solve the offset/flicker noise problem. It helps to minimise the silicon area and power consumption of a cyclic analogue-to-digital converter (ADC) with an operational transconductance amplifier sharing scheme. A 10 bit 1 MS/s cyclic ADC implemented in the TI 0.35 m CMOS process proves the effectiveness of the proposed technique.  相似文献   

16.
A low-noise cascaded multi-bit sigma-delta pipeline analog-to-digital converter (ADC) with a low oversampling rate is presented. The architecture is composed of a 2-order 5-bit sigma-delta modulator and a cascaded 4-stage 12-bit pipelined ADC, and operates at a low 8X oversampling rate, The static and dynamic performances of the whole ADC can be improved by using dynamic element matching technique. The ADC operates at a 4 MHz clock rate and dissipates 300 mW at a 5 V/3 V analog/digital power supply. It is developed in a 0.35 μm CMOS process and achieves an SNR of 82 dB.  相似文献   

17.
A low-noise cascaded multi-bit sigma-delta pipeline analog-to-digital converter (ADC) with a low over-sampling rate is presented. The architecture is composed of a 2-order 5-bit sigma-delta modulator and a cascaded 4-stage 12-bit pipelined ADC, and operates at a low 8X oversampling rate. The static and dynamic performances of the whole ADC can be improved by using dynamic element matching technique. The ADC operates at a 4 MHz clock rate and dissipates 300 mW at a 5 V/3 V analog/digital power supply. It is developed in a 0.35μm CMOS process and achieves an SNR of 82 dB.  相似文献   

18.
A novel rapid power-on operational amplifier and a current modulation technique are used in a 10-bit 1.5-bit/stage pipelined ADC in 0.18-/spl mu/m CMOS to realize power scalability between 1 kS/s (15 /spl mu/W) and 50 MS/s (35 mW), while maintaining an SNDR of 54-56 dB for all sampling rates. The current modulated power scaling (CMPS) technique is shown to enhance the power scaleable range of current scaling by 50 times, allowing ADC power to be varied by a factor of 2500 while only varying bias currents by a factor of 50. Furthermore, the nominal power is reduced by 20%-30% by completely powering off the rapid power-on opamps during the sampling phase in the pipeline's sample-and-holds.  相似文献   

19.
This paper describes a study to determine if a current-mode circuit is useful as an analog circuit technique for realizing submicron mixed analog-and-digital MOS LSIs. To examine this, we designed and circuit simulated a new current-mode ADC bit-block for a 3 V, 10-bit level, 20 MHz ADC with a pipeline architecture and with full current-mode approach. A new precision current-mode sample-and-hold circuit which enables operation of a bit block at a clock speed of 20 MHz was developed. Current mismatches caused by the poor output impedance of a device were also decreased by adopting a cascode configuration throughout the design. Operation with a 3 V power supply and a 20 MHz clock speed in a 3-bit A/D configuration was verified through circuit simulation using standard CMOS 0.6 m device parameters. Gain error, mismatch of current, and linearity of the bit block with changing threshold voltage of a device were carefully examined. The bit block has a gain error of 0.2% (10-bit level), a linearity error of less than 0.1% (more than 10-bit level), and a current mismatch of DAC current sources in a bit cell of 0.2 to 0.4% (more than 8-bit level) with a 3 V power supply and 20 MHz clock speed. An 8-to 9-bit video-speed pipeline ADC can be realized without calibration. This confirms that the current-mode approach is effective.  相似文献   

20.
This paper presents a pipelined analog-to-digital converter (ADC) operating from a 0.5-V supply voltage. The ADC uses true low-voltage design techniques that do not require any on-chip supply or clock voltage boosting. The switch OFF leakage in the sampling circuit is suppressed using a cascaded sampling technique. A front-end signal-path sample-and-hold amplifier (SHA) is avoided by using a coarse auxiliary sample and hold (S/H) for the sub-ADC and by synchronizing the sub-ADC and pipeline-stage sampling circuit. A 0.5-V operational transconductance amplifier (OTA) is presented that provides inter-stage amplification with an 8-bit performance for the pipelined ADC operating at 10 Ms/s. The chip was fabricated on a standard 90 nm CMOS technology and measures 1.2 mm times 1.2 mm. The prototype chip has eight identical stages and stage scaling was not used. It consumes 2.4 mW for 10-Ms/s operation. Measured peak SNDR is 48.1 dB and peak SFDR is 57.2 dB for a full-scale sinusoidal input. Maximal integral nonlinearity and differential nonlinearity are 1.19 and 0.55 LSB, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号