首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The thermodynamic data for the Y2O3–BaO–Cu2O–CuO quaternary system were optimized from measured thermodynamic data. A two-sublattice model for ionic solution was used to express the Gibbs free energy of the liquid phase, and a two-sublattice regular solution model was used for the nonstoichiometric YBa2Cu3O6+δ superconducting compound. The optimized thermodynamic data were used to calculate the phase diagrams of the Cu2O–CuO binary system and the CuO x –Y2Cu2O5 and CuO x –BaCuO2 quasi-binary systems. The results were in good agreement with reported measured data. The liquidus projection and isothermal and vertical sections of the Y2O3–BaO-CuO x quasi-ternary system were calculated. The effect of oxygen pressure on some reaction temperatures was predicted by calculating them at various oxygen pressures, and the oxygen contents (6 +δ) in YBa2Cu3O6+δ were calculated at various temperatures and oxygen pressures. The results were compared with experimental data.  相似文献   

2.
The phase relations at a temperature below "subsolidus" in the system Al2O3–B2O3–Nd2O3 are reported. Specimens were prepared from various compositions of Al2O3, B2O3, and Nd2O3 of purity 99.5%, 99.99%, and 99.9%, respectively, and fired at 1100°C. There are six binary compounds and one ternary compound in this system. The ternary compound, NdAl3(BO3)4 (NAB), has a phase transition at 950°C ± 15°C. The high-temperature form of NAB has a second harmonic generation (SHG) efficiency of KH2PO4 (KDP) of the order of magnitude of the form which has been used as a good self-activated laser material, and the low-temperature form of NAB has no SHG efficiency.  相似文献   

3.
4.
An extensive X-ray study of CeO2–Nd2O3 solid solutions was performed, and the densities of solid solutions containing various concentrations of NdO1.5 were measured using several techniques. Solid solutions containing 0–80 mol% NdO1.5 were synthesized by coprecipitation from Ce(NO3)3 and Nd(NO3)3 aqueous solutions, and the coprecipitated samples were sintered at 1400°C. A fluorite structure was observed for CeO2–NdO1.5 solid solutions with 0–40 mol% NdO1.5, which changed to a rare earth C-type structure at 45–75 mol% NdO1.5. The change in the lattice parameters of CeO2–NdO1.5 solid solutions, when plotted with respect to the NdO1.5 concentration, showed that the lattice parameters followed Vegard's law in both the fluorite and rare earth C-type regions. The maximum solubility limit for NdO1.5 in CeO2 solid solution was approximately 75 mol%. The relationship between the density and the Nd concentration indicated that the defect structure followed the anion vacancy model over the entire range (0–70 mol% NdO1.5) of solid solution.  相似文献   

5.
The importance of aluminum nitride (AlN) stems from its application in microelectronics as a substrate material due to high thermal conductivity, high electrical resistance, mechanical strength and hardness, thermal durability, and chemical stability. Yttria (Y2O3) is the best additive for AlN sintering. AlN densifies by a liquid-phase mechanism, where the surface oxide, Al2O3, reacts with Y2O3 to form an Y-Al-O-N liquid that promotes particle rearrangement and densification. Construction of the phase relations in this multicomponent system is essential for optimizing the properties of AlN. The ternary phase diagram of the AlN–Al2O3–Y2O3 was developed by Gibbs energy minimization using interpolation procedures based on modeling the binary subsystems. This paper aims at testing the resultant understanding experimentally at selected compositions using in situ high-temperature neutron diffractometry. These experimental results agree with the thermodynamic calculations of AlN–Al2O3–Y2O3. The ternary phase diagram has been constructed for the first time in this work. High-temperature neutron diffractometry has permitted real time measurement of the reactions involved in this ternary system, especially to determine the temperature range for each reaction, which would have been difficult to establish by other means.  相似文献   

6.
Liquidus equilibrium relations for the air isobaric section of the system Y2O3–Fe2O3–FeO–Al2O3 are presented. A Complete solid-solution series is found between yttrium iron garnet and yttrium aluminum garnet as well as extensive solid solutions in the spinel, hematite, orthoferrite, and corundum phases. Minimum melting temperatures are raised progressively with the addition of alumina from 1469°C in the system Y–Fe–O to a quaternary isobaric peritectic at 1547°C and composition Y 0.22 Fe 1.08 Al 0.70 O 2.83* Liquidus temperatures increase rapidly with alumina substitutions beyond this point. The thermal stability of the garnet phase is increased with alumina substitution to the extent that above composition Y 0.75 Fe 0.65 Al 0.60 O 3 garnet melts directly to oxide liquid without the intrusion of the orthoferrite phase. Garnet solid solutions between Y 0.75 Fe 1.25 O 3 and Y 0.75 Fe 0.32- Al 0.93 O 3 can be crystallized from oxide liquids at minimum temperatures ranging from 1469° to 1547°C, respectively. During equilibrium crystallization of the garnet phase, large changes in composition occur through reaction with the liquid. Unless care is taken to minimize temperature fluctuations and unless growth proceeds very slowly, the crystals may show extensive compositional variation from core to exterior.  相似文献   

7.
Phase equilibria in the system HfO2–Y2O3–CaO were studied in the temperature range 1250° to 2850°C by both experimental methods (X-ray phase analysis at 20° to 2000°C, petrography, annealing and quenching, differential thermal analysis in He at temperatures to 2500°C, thermal analysis in air using a solar furnace at temperatures to 3000°C, and electron microprobe X-ray analysis) and theoretical means (development of a mathematical model for the liquidus surface by means of the reduced polynomial method). Phase equilibria were determined by the structure of the restricting binary systems. No ternary compounds were found. The liquidus was characterized by the presence of six four-phase, invariant equilibria. Solid solutions were based on monoclinic (M), tetragonal (T), and cubic (F) modifications of HfO2; C and H forms of Y2O3; CaO; and CaHfO3 that crystallized in two polymorphous modifications, namely, the cubic and rhombic perovskite-type structure.  相似文献   

8.
Heat treatments in several environments were performed on a series of compounds in the Al2O3 and Y2O3 system: Al2O3Y3Al5O12 eutectic, Y3Al5O12, YAlO3, Y4Al2O9, and Y2O3. The yttrium aluminates were found to be stable at high temperatures under vacuum and in air. However, when they were heat-treated under vacuum in proximity to SiC, degradation was observed. This was found to be primarily a result of carbothermal reduction. In a similarly reducing environment without Si, the yttrium aluminates, and Al2O3 and Y2O3, all exhibited degradation by carbothermal reduction. Based upon the experimental results, a degradation mechanism for yttrium aluminates was proposed.  相似文献   

9.
The phase relations in the system U02-U03-Yz03, particularly in the Y203-rich region, were examined by X-ray and chemical analyses of reacted powders heated at temperatures up to 1700°C in H2, CO2-CO2 and air. Four phases were identified in the system at temperatures between 1000° and 1700°C: U308, face-centered cubic solid solution, body-centered cubic solid solution, and a rhombohedral phase of composition (U,Y)7O2 ranging from 52.5 to 75 mole % Y2O3. The rhombohedral phase oxidized to a second rhombohedral phase with a nominal composition (U,Y), at temperatures below 1000°C. This phase transformed to a face-centered cubic phase after heating in air above 1000° C. The solubility of UO, in the body-centered cubic phase is about 14 mole % between 1000° and 1700°C but decreases to zero as the uranium approaches the hexavalent oxidation state. The solubility of Yz03 in the face-centered cubic solid solution ranges from 0 to 50 mole % Y2O3 under reducing conditions and from 33 to 60 mole % Y2O3 under oxidizing conditions at 1000°C. At temperatures above 1000° C, the face-centered cubic solid solution is limited by a filled fluorite lattice of composition (U,Y)O2. For low-yttria content, oxidation at low temperatures (<300°C) permits additional oxygen to be retained in the structure to a composition approaching (U,Y)O2.25 A tentative ternary phase diagram for the system UO2-UO3-Y2O3 is presented and the change in lattice parameter and in cell volume for the solid-solution phases is correlated with the composition.  相似文献   

10.
A complete critical evaluation and thermodynamic modeling of the phase diagrams and thermodynamic properties of the MgO–Al2O3–CrO–Cr2O3 system at 1 bar total pressure are presented. Optimized equations for the thermodynamic properties of all phases are obtained which reproduce all available thermodynamic and phase equilibrium data within experimental error limits from 25°C to above the liquidus temperatures at all compositions and oxygen partial pressures. The optimized thermodynamic properties and phase diagrams are believed to be the best estimates presently available. The database of the model parameters can be used along with software for Gibbs energy minimization in order to calculate any type of phase diagram section.  相似文献   

11.
Compounds in a CaO–Y2O3–SnO2 system were prepared by a solid-state reaction at 1673 K. The phase relation in this system was investigated by powder X-ray diffraction. Besides the previously reported ternary compounds, CaSnO3, Ca2SnO4, Y2Sn2O7, and a quaternary compound Ca0.4Y1.2Sn0.4O3, solid-solution series of Ca2− x Y2 x Sn1− x O4 with 0≤ x ≤0.5, and Ca1− y Y2 y Sn1− y O3 with 0≤ y ≤0.2 and 0.95≤ y ≤1.0 were found. The cell parameters of these solid-solution series were refined. The changes of rhombohedral cell parameters in the samples prepared in the range 0.565< y <0.714 of Ca1− y Y2 y Sn1− y O3 suggested the existence of solid solutions of Ca0.4Y1.2Sn0.4O3, although their single phases could not be prepared, except at y =0.6.  相似文献   

12.
Crack resistance characteristics and fatigue properties have been studied in four types of Y2O3–TZP ceramics including one containing Al2O3. The largely linear-elastic behavior connected with the very small transformation zone (<5 μm) explains the absence of any resistance-curve behavior and the flaw-controlled strength. The crack resistance shows high sensitivity to environment-induced subcritical crack growth. This influence is also operative in both types of fatigue experiments, i.e., under static and cyclic stresses, leading to reduced fatigue thresholds compared with K IC. While for static conditions a benefit is observed from enhanced t-m ZrO2 transformation, cyclic stresses provoke an additional fatigue effect. However, if the cyclic stresses are restricted to subthreshold values, cyclic stress-induced effects in the process zone provide an improvement of the materials being visible as a strengthening effect.  相似文献   

13.
The phase diagrams in the Al2O3–Cr2O3 and V2O3–Cr2O3 systems have been assessed by thermodynamic modeling with existing data from the literature. While the regular and subregular solution models were used in the Al2O3–Cr2O3 system to represent the Gibbs free energies of the liquid and solid phases, respectively, the regular solution model was applied to both phases in the V2O3–Cr2O3 system. By using the liquidus, solidus, and/or miscibility gap data, the interaction parameters of the liquid and solid phases were optimized through a multiple linear regression method. The phase diagrams calculated from these models are in good agreement with experimental data. Also, the solid miscibility gap and chemical spinodal in the V2O3–Cr2O3 system were estimated.  相似文献   

14.
15.
Amorphous films in the system Al2O3–Y2O3 were prepared by the rf sputtering method in the range of 0–76 mol% Y2O3, and their density, refractive index, and elastic constants were measured. All of the physical properties of the amorphous Al2O3–Y2O3 films had a similar compositional dependence; that is, they increased continuously, but not linearly with increasing Y2O3 content. To confirm the coordination states of aluminum and yttrium ions in the amorphous Al2O3–Y2O3 films, the Al K α X-ray emission spectra and the X-ray absorption near edge structures (XANES) were measured. The average coordination number of aluminum ions in the amorphous films containing up to about 40 mol% Y2O3 content was 5, that is a mixture of 4-fold- and 6-fold-coordinated states. In the region of more than about 50 mol% Y2O3, the fraction of the 6-fold-coordinated aluminum ions increased with increasing Y2O3 content, while the results led to the conclusion that the coordination number of yttrium ions was always 6, regardless of composition. These results indicate that, in amorphous films in the system Al2O3–Y2O3, the change of the coordination state of aluminum ions has an important effect on physical properties.  相似文献   

16.
This study examined pressure consolidation of amorphous Al2O3–15 mol% Y2O3 powders prepared by co-precipitation and spray pyrolysis. The two amorphous powders had similar true densities and crystallization sequences. Uniaxial hot pressing was carried out at 450°–600°C with a moderate pressure of 750 MPa. The co-precipitated powder could be hot pressed to a maximum relative density of 98% and remained amorphous. Pressure adversely affected the densification of the spray-pyrolyzed powder by favoring an early crystallization of γ-Al2O3 phase at 580°C. Plastic deformation of the amorphous phase is believed to be responsible for the large densification of the amorphous powders.  相似文献   

17.
18.
The cubic ( c -ZrO2) and tetragonal zirconia ( t -ZrO2) phase stability regions in the system ZrO2–Y2O3–Ta2O5 were delineated. The c -ZrO2 solid solutions are formed with the fluorite structure. The t -ZrO2 solid solutions having a c/a axial ratio (tetragonality) smaller than 1.0203 display high fracture toughness (5 to 14 MPa · m1/2), and their instability/transformability to monoclinic zirconia ( m -ZrO2) increases with increasing tetragonality. On the other hand, the t -ZrO2 solid solutions stabilized at room temperature with tetragonality greater than 1.0203 have low toughness values (2 to 5 MPa · m1/2), and their transformability is not related to the tetragonality.  相似文献   

19.
A 2.45 GHz microwave-sintered Si3N4–Y2O3–MgO system containing various amounts of ZrO2 secondary additives have been studied with respect to phase transformation and densification behavior. The temperature dependent dielectric properties were measured from 25°C to 1400°C using a conventional cavity perturbation technique. Phase transformation behavior was studied using X-ray diffractometry. Microwave sintered results were compared with those of conventional sintered results. It has been found that α to β phase transformation was completed at a lower temperature in microwave-sintered samples than those of the conventionally sintered samples. Density of the microwave-sintered samples increased up to 2.5 wt% of ZrO2 addition and thereafter it showed a tendency to decrease or remain constant. The decrease in density is attributed to the pore generation caused by decomposition due to the localized over heating.  相似文献   

20.
Si3N4/SiC composites are ceramic materials that exhibit excellent performance for high-temperature applications. Prepared from an ultrafine amorphous Si-C-N powder, sintered materials are constituted mainly of a β -Si3N4 matrix with SiC inclusions and have a very small grain size (less than 1 μm). Such a microstructure is propitious for superplastic forming. Superplasticity has been studied in tension, from 1550° to 1650°C, under nitrogen atmosphere. Elongations over 100% have been achieved. In many cases, at the highest temperatures and slowest strain rates, materials are damaged by different processes, including microcracking, cavitation, and chemical decomposition. A map of the most suitable (strain-rate/temperature) domain has been established. It allows the prevention of any structural alteration by selecting carefully the testing conditions. Since specimens suffered considerable strain-induced hardening, sources for this phenomenon are examined. Although the experiments have involved high temperature and extensive strain, neither static nor dynamic grain growth has occurred. Crystallization of the amorphous grain-boundary phase, which is reported in most cases, may be invoked. However, based on microstructural observations, it is not the unique origin for flow hardening.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号