首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Over the last several years, many clustering algorithms have been applied to gene expression data. However, most clustering algorithms force the user into having one set of clusters, resulting in a restrictive biological interpretation of gene function. It would be difficult to interpret the complex biological regulatory mechanisms and genetic interactions from this restrictive interpretation of microarray expression data. The software package SignatureClust allows users to select a group of functionally related genes (called ‘Landmark Genes’), and to project the gene expression data onto these genes. Compared to existing algorithms and software in this domain, our software package offers two unique benefits. First, by selecting different sets of landmark genes, it enables the user to cluster the microarray data from multiple biological perspectives. This encourages data exploration and discovery of new gene associations. Second, most packages associated with clustering provide internal validation measures, whereas our package validates the biological significance of the new clusters by retrieving significant ontology and pathway terms associated with the new clusters. SignatureClust is a free software tool that enables biologists to get multiple views of the microarray data. It highlights new gene associations that were not found using a traditional clustering algorithm. The software package ‘SignatureClust’ and the user manual can be downloaded from .  相似文献   

2.
This paper proposes a new hierarchical clustering method using genetic algorithms for the analysis of gene expression data. This method is based on the mathematical proof of several results, showing its effectiveness with regard to other clustering methods. Genetic algorithms applied to cluster analysis have disclosed good results on biological data and many studies have been carried out in this sense, although most of them are focused on partitional clustering methods. Even though there are few studies that attempt to use genetic algorithms for building hierarchical clustering, they do not include constraints that allow us to reduce the complexity of the problem. Therefore, these studies become intractable problems for large data sets. On the other hand, the deterministic hierarchical clustering methods generally face the problem of convergence towards local optimums due to their greedy strategy. The method introduced here is an alternative to solve some of the problems existing methods face. The results of the experiments have shown that our approach can be very effective in cluster analysis of DNA microarray data.  相似文献   

3.
The advent of microarray technology enables us to monitor an entire genome in a single chip using a systematic approach. Clustering, as a widely used data mining approach, has been used to discover phenotypes from the raw expression data. However traditional clustering algorithms have limitations since they can not identify the substructures of samples and features hidden behind the data. Different from clustering, biclustering is a new methodology for discovering genes that are highly related to a subset of samples. Several biclustering models/methods have been presented and used for tumor clinical diagnosis and pathological research. In this paper, we present a new biclustering model using Binary Matrix Factorization (BMF). BMF is a new variant rooted from non-negative matrix factorization (NMF). We begin by proving a new boundedness property of NMF. Two different algorithms to implement the model and their comparison are then presented. We show that the microarray data biclustering problem can be formulated as a BMF problem and can be solved effectively using our proposed algorithms. Unlike the greedy strategy-based algorithms, our proposed algorithms for BMF are more likely to find the global optima. Experimental results on synthetic and real datasets demonstrate the advantages of BMF over existing biclustering methods. Besides the attractive clustering performance, BMF can generate sparse results (i.e., the number of genes/features involved in each biclustering structure is very small related to the total number of genes/features) that are in accordance with the common practice in molecular biology.  相似文献   

4.
Evaluating clustering results is a fundamental task in microarray data analysis, due to the lack of enough biological knowledge to know in advance the true partition of genes. Many quality indexes for gene clustering evaluation have been proposed. A critical issue in this domain is to compare and aggregate quality indexes to select the best clustering algorithm and the optimal parameter setting for a dataset. Furthermore, due to the huge amount of data generated by microarray experiments and the requirement of external resources such as ontologies to compute biological indexes, another critical issue is the performance decline in term of execution time. Thus, the distributed computation of algorithms and quality indexes becomes essential. Addressing these issues, this paper presents the MicroClAn framework, a distributed system to evaluate and compare clustering algorithms using the most exploited quality indexes. The best solution is selected through a two-step ranking aggregation of the ranks produced by quality indexes. A new index oriented to the biological validation of microarray clustering results is also introduced. Several scheduling strategies integrated in the framework allow to distribute tasks in the grid environment to optimize the completion time. Experimental results show the effectiveness of our aggregation strategy in identifying the best rank among different clustering algorithms. Moreover, our framework achieves good performance in terms of completion time with few computational resources.  相似文献   

5.
Clustering is concerned with the discovery of interesting groupings of records in a database. Many algorithms have been developed to tackle clustering problems in a variety of application domains. In particular, some of them have been used in bioinformatics research to uncover inherent clusters in gene expression microarray data. In this paper, we show how some popular clustering algorithms have been used for this purpose. Based on experiments using simulated and real data, we also show that the performance of these algorithms can be further improved. For more effective clustering of gene expression microarray data, which is typically characterized by a lot of noise, we propose a novel evolutionary algorithm called evolutionary clustering (EvoCluster). EvoCluster encodes an entire cluster grouping in a chromosome so that each gene in the chromosome encodes one cluster. Based on such encoding scheme, it makes use of a set of reproduction operators to facilitate the exchange of grouping information between chromosomes. The fitness function that the EvoCluster adopts is able to differentiate between how relevant a feature value is in determining a particular cluster grouping. As such, instead of just local pairwise distances, it also takes into consideration how clusters are arranged globally. Unlike many popular clustering algorithms, EvoCluster does not require the number of clusters to be decided in advance. Also, patterns hidden in each cluster can be explicitly revealed and presented for easy interpretation even by casual users. For performance evaluation, we have tested EvoCluster using both simulated and real data. Experimental results show that it can be very effective and robust even in the presence of noise and missing values. Also, when correlating the gene expression microarray data with DNA sequences, we were able to uncover significant biological binding sites (both previously known and unknown) in each cluster discovered by EvoCluster.  相似文献   

6.
Cluster analysis for gene expression data: a survey   总被引:16,自引:0,他引:16  
DNA microarray technology has now made it possible to simultaneously monitor the expression levels of thousands of genes during important biological processes and across collections of related samples. Elucidating the patterns hidden in gene expression data offers a tremendous opportunity for an enhanced understanding of functional genomics. However, the large number of genes and the complexity of biological networks greatly increases the challenges of comprehending and interpreting the resulting mass of data, which often consists of millions of measurements. A first step toward addressing this challenge is the use of clustering techniques, which is essential in the data mining process to reveal natural structures and identify interesting patterns in the underlying data. Cluster analysis seeks to partition a given data set into groups based on specified features so that the data points within a group are more similar to each other than the points in different groups. A very rich literature on cluster analysis has developed over the past three decades. Many conventional clustering algorithms have been adapted or directly applied to gene expression data, and also new algorithms have recently been proposed specifically aiming at gene expression data. These clustering algorithms have been proven useful for identifying biologically relevant groups of genes and samples. In this paper, we first briefly introduce the concepts of microarray technology and discuss the basic elements of clustering on gene expression data. In particular, we divide cluster analysis for gene expression data into three categories. Then, we present specific challenges pertinent to each clustering category and introduce several representative approaches. We also discuss the problem of cluster validation in three aspects and review various methods to assess the quality and reliability of clustering results. Finally, we conclude this paper and suggest the promising trends in this field.  相似文献   

7.
基因表达数据的聚类分析研究进展   总被引:4,自引:1,他引:3  
基因表达数据的爆炸性增长迫切需求自动、有效的数据分析工具. 目前聚类分析已成为分析基因表达数据获取生物学信息的有力工具. 为了更好地挖掘基因表达数据, 近年来提出了许多改进的传统聚类算法和新聚类算法. 本文首先简单介绍了基因表达数据的获取和表示, 之后系统地介绍了近年来应用在基因表达数据分析中的聚类算法. 根据聚类目标的不同将算法分为基于基因的聚类、基于样本的聚类和两路聚类, 并对每类算法介绍了其生物学的含义及其难点, 详细讨论了各种算法的基本原理及优缺点. 最后总结了当前的基因表达数据的聚类分析方法,并对发展趋势作了进一步的展望.  相似文献   

8.
Clustering aggregation, known as clustering ensembles, has emerged as a powerful technique for combining different clustering results to obtain a single better clustering. Existing clustering aggregation algorithms are applied directly to data points, in what is referred to as the point-based approach. The algorithms are inefficient if the number of data points is large. We define an efficient approach for clustering aggregation based on data fragments. In this fragment-based approach, a data fragment is any subset of the data that is not split by any of the clustering results. To establish the theoretical bases of the proposed approach, we prove that clustering aggregation can be performed directly on data fragments under two widely used goodness measures for clustering aggregation taken from the literature. Three new clustering aggregation algorithms are described. The experimental results obtained using several public data sets show that the new algorithms have lower computational complexity than three well-known existing point-based clustering aggregation algorithms (Agglomerative, Furthest, and LocalSearch); nevertheless, the new algorithms do not sacrifice the accuracy.  相似文献   

9.
聚类分析是数据挖掘中的一个重要研究课题。在许多实际应用中,聚类分析的数据往往具有很高的维度,例如文档数据、基因微阵列等数据可以达到上千维,而在高维数据空间中,数据的分布较为稀疏。受这些因素的影响,许多对低维数据有效的经典聚类算法对高维数据聚类常常失效。针对这类问题,本文提出了一种基于遗传算法的高维数据聚类新方法。该方法利用遗传算法的全局搜索能力对特征空间进行搜索,以找出有效的聚类特征子空间。同时,为了考察特征维在子空间聚类中的特征,本文设计出一种基于特征维对子空间聚类贡献率的适应度函数。人工数据、真实数据的实验结果以及与k-means算法的对比实验证明了该方法的可行性和有效性。  相似文献   

10.
Recent advancement in microarray technology permits monitoring of the expression levels of a large set of genes across a number of time points simultaneously. For extracting knowledge from such huge volume of microarray gene expression data, computational analysis is required. Clustering is one of the important data mining tools for analyzing such microarray data to group similar genes into clusters. Researchers have proposed a number of clustering algorithms in this purpose. In this article, an attempt has been made in order to improve the performance of fuzzy clustering by combining it with support vector machine (SVM) classifier. A recently proposed real-coded variable string length genetic algorithm based clustering technique and an iterated version of fuzzy C-means clustering have been utilized in this purpose. The performance of the proposed clustering scheme has been compared with that of some well-known existing clustering algorithms and their SVM boosted versions for one simulated and six real life gene expression data sets. Statistical significance test based on analysis of variance (ANOVA) followed by posteriori Tukey-Kramer multiple comparison test has been conducted to establish the statistical significance of the superior performance of the proposed clustering scheme. Moreover biological significance of the clustering solutions have been established.  相似文献   

11.
This paper presents a new recursive hybrid algorithm for training a radial basis function (RBF) network. The algorithm consists of a proposed clustering algorithm to position the RBF centres and the Givens least-squares algorithm to estimate the weights. This paper begins with a discussion about the problems of clustering in positioning RBF centres. Then a new clustering algorithm called adaptive fuzzy c-means clustering algorithm is proposed to reduce the problems. The capability of the proposed algorithm was tested to model three data sets: one simulated and two real data sets. It was found that the algorithm provided good performance. The performance of the algorithm was then compared with adaptive k-means, non-adaptive k-means and non-adaptive fuzzy cmeans clustering algorithms. Overall performance of the RBF network that used the proposed clustering algorithm was found to be much better than those that used other clustering algorithms. Simulation results also revealed that the algorithm was not sensitive to initial centres.  相似文献   

12.
We present a new dissimilarity, which combines connectivity and density information. Usually, connectivity and density are conceived as mutually exclusive concepts; however, we discuss a novel procedure to merge both information sources. Once we have calculated the new dissimilarity, we apply MDS in order to find a low dimensional vector space representation. The new data representation can be used for clustering and data visualization, which is not pursued in this paper. Instead we use clustering to estimate the gain from our approach consisting of dissimilarity + MDS. Hence, we analyze the partitions’ quality obtained by clustering high dimensional data with various well known clustering algorithms based on density, connectivity and message passing, as well as simple algorithms like k-means and Hierarchical Clustering (HC). The quality gap between the partitions found by k-means and HC alone compared to k-means and HC using our new low dimensional vector space representation is remarkable. Moreover, our tests using high dimensional gene expression and image data confirm these results and show a steady performance, which surpasses spectral clustering and other algorithms relevant to our work.  相似文献   

13.
The emerging field of bioinformatics has recently created much interest in the computer science and engineering communities. With the wealth of sequence data in many public online databases and the huge amount of data generated from the Human Genome Project, computer analysis has become indispensable. This calls for novel algorithms and opens up new areas of applications for many pattern recognition techniques. In this article, we review two major avenues of research in bioinformatics, namely DNA sequence analysis and DNA microarray data analysis. In DNA sequence analysis, we focus on the topics of sequence comparison and gene recognition. For DNA microarray data analysis, we discuss key issues such as image analysis for gene expression data extraction, data pre-processing, clustering analysis for pattern discovery and gene expression time series data analysis. We describe current methods and show how computational techniques could be useful in these areas. It is our hope that this review article could demonstrate how the pattern recognition community could have an impact on the fascinating and challenging area of genomic research.  相似文献   

14.
Robust clustering by pruning outliers   总被引:1,自引:0,他引:1  
In many applications of C-means clustering, the given data set often contains noisy points. These noisy points will affect the resulting clusters, especially if they are far away from the data points. In this paper, we develop a pruning approach for robust C-means clustering. This approach identifies and prunes the outliers based on the sizes and shapes of the clusters so that the resulting clusters are least affected by the outliers. The pruning approach is general, and it can improve the robustness of many existing C-means clustering methods. In particular, we apply the pruning approach to improve the robustness of hard C-means clustering, fuzzy C-means clustering, and deterministic-annealing C-means clustering. As a result, we obtain three clustering algorithms that are the robust versions of the existing ones. In addition, we integrate the pruning approach with the fuzzy approach and the possibilistic approach to design two new algorithms for robust C-means clustering. The numerical results demonstrate that the pruning approach can achieve good robustness.  相似文献   

15.
16.
Microarray technology provides a simple way for collecting huge amounts of data on the expression level of thousands of genes. Detecting similarities among genes is a fundamental task, both to discover previously unknown gene functions and to focus the analysis on a limited set of genes rather than on thousands of genes. Similarity between genes is usually evaluated by analyzing their expression values. However, when additional information is available (e.g., clinical information), it may be beneficial to exploit it. In this paper, we present a new similarity measure for genes, based on their classification power, i.e., on their capability to separate samples belonging to different classes. Our method exploits a new gene representation that measures the classification power of each gene and defines the classification distance as the distance between gene classification powers. The classification distance measure has been integrated in a hierarchical clustering algorithm, but it may be adopted also by other clustering algorithms. The result of experiments runs on different microarray datasets supports the intuition of the proposed approach.  相似文献   

17.
HARP: a practical projected clustering algorithm   总被引:4,自引:0,他引:4  
In high-dimensional data, clusters can exist in subspaces that hide themselves from traditional clustering methods. A number of algorithms have been proposed to identify such projected clusters, but most of them rely on some user parameters to guide the clustering process. The clustering accuracy can be seriously degraded if incorrect values are used. Unfortunately, in real situations, it is rarely possible for users to supply the parameter values accurately, which causes practical difficulties in applying these algorithms to real data. In this paper, we analyze the major challenges of projected clustering and suggest why these algorithms need to depend heavily on user parameters. Based on the analysis, we propose a new algorithm that exploits the clustering status to adjust the internal thresholds dynamically without the assistance of user parameters. According to the results of extensive experiments on real and synthetic data, the new method has excellent accuracy and usability. It outperformed the other algorithms even when correct parameter values were artificially supplied to them. The encouraging results suggest that projected clustering can be a practical tool for various kinds of real applications.  相似文献   

18.
Biclustering is an important method in DNA microarray analysis which can be applied when only a subset of genes is co-expressed in a subset of conditions. Unlike standard clustering analyses, biclustering methodology can perform simultaneous classification on two dimensions of genes and conditions in a microarray data matrix. However, the performance of biclustering algorithms is affected by the inherent noise in data, types of biclusters and computational complexity. In this paper, we present a geometric biclustering method based on the Hough transform and the relaxation labeling technique. Unlike many existing biclustering algorithms, we first consider the biclustering patterns through geometric interpretation. Such a perspective makes it possible to unify the formulation of different types of biclusters as hyperplanes in spatial space and facilitates the use of a generic plane finding algorithm for bicluster detection. In our algorithm, the Hough transform is employed for hyperplane detection in sub-spaces to reduce the computational complexity. Then sub-biclusters are combined into larger ones under the probabilistic relaxation labeling framework. Our simulation studies demonstrate the robustness of the algorithm against noise and outliers. In addition, our method is able to extract biologically meaningful biclusters from real microarray gene expression data.  相似文献   

19.
cDNA microarrays permit massively parallel gene expression analysis and have spawned a new paradigm in the study of molecular biology. One of the significant challenges in this genomic revolution is to develop sophisticated approaches to facilitate the visualization, analysis, and interpretation of the vast amounts of multi-dimensional gene expression data. We have applied self-organizing map (SOM) in order to meet these challenges. In essence, we utilize U-matrix and component planes in microarray data visualization and introduce general procedure for assessing significance for a cluster detected from U-matrix. Our case studies consist of two data sets. First, we have analyzed a data set containing 13,824 genes in 14 breast cancer cell lines. In the second case we show an example of the SOM in drug treatment of prostate cancer cells. Our results indicate that (1) SOM is capable of helping finding certain biologically meaningful clusters, (2) clustering algorithms could be used for finding a set of potential predictor genes for classification purposes, and (3) comparison and visualization of the effects of different drugs is straightforward with the SOM. In summary, the SOM provides an excellent format for visualization and analysis of gene microarray data, and is likely to facilitate extraction of biologically and medically useful information.  相似文献   

20.
It is important to find the natural clusters in high dimensional data where visualization becomes difficult. A natural cluster is a cluster of any shape and density, and it should not be restricted to a globular shape as a wide number of algorithms assume, or to a specific user-defined density as some density-based algorithms require.In this work, it is proposed to solve the problem by maximizing the relatedness of distances between patterns in the same cluster. It is then possible to distinguish clusters based on their distance-based densities. A novel dynamic model is proposed based on new distance-relatedness measures and clustering criteria. The proposed algorithm “Mitosis” is able to discover clusters of arbitrary shapes and arbitrary densities in high dimensional data. It has a good computational complexity compared to related algorithms. It performs very well on high dimensional data, discovering clusters that cannot be found by known algorithms. It also identifies outliers in the data as a by-product of the cluster formation process. A validity measure that depends on the main clustering criterion is also proposed to tune the algorithm's parameters. The theoretical bases of the algorithm and its steps are presented. Its performance is illustrated by comparing it with related algorithms on several data sets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号