首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
一、引言砷化镓肖特基势垒场效应晶体管是在X波段和更高频率上显示线性功率放大性能的第一个三端固体器件。它的独特的信号处理能力和低噪声特性已为许多工作者所证明。例如,在10千兆赫时,其噪声系数接近3分贝的已有报导,而理论上预计的还低一些。目前,从低的C波段往上,砷化镓场效应晶体管已在低噪声放大器中被采用。就这点而论,它很出色地弥补了硅双极晶体管仍然只能控制C波段以下的微波波段的状况,然而,现在正用具有缓冲层的场效应晶体管来实现降低噪声,双极晶体管的这一独特频率范围不会继续存在多久。图1是根据1975年7月用硅双极晶体管和砷化镓场效应晶体管  相似文献   

2.
具有和真空管同样性能的固体放大器件的设想已在三十年代就提出来,1948年发明点接触型双极晶体管的巴丁、布拉吞、肖克莱等人最初也是把实现目前的场效应晶体管作为努力的目标,这已是众所周知的历史事实。此后,双极晶体管取得了惊人的进步,而与此相反,场效应管却处于停滞状态。从双极晶体管的飞速发展情况看来,继锗晶体管之后的硅晶体管难道不是完全取代小信号放大用以至于高频大功率用的真空管吗?实践回答,否!在包括硅晶体管在内的半导体放大器件前进道路上出现了强大的竞  相似文献   

3.
本文简要的综述了砷化镓场效应晶体管(以下简写GaAsFET)振荡器的发展近况.介绍了CaAsFET振荡器的基本电路,介质高稳定GaAsFET振荡器以及电调宽频带GaAsFET振荡器.最后与体效应及双极晶体管振荡器进行了比较,从而肯定了GaAsFET振荡器的广阔使用前景.  相似文献   

4.
已研制成最高振荡频率(f_(max))大于12千兆赫的砷化镓场效应晶体管。器件具有肖特基势垒栅的半绝缘砷化镓衬底上的外延淀积n型沟道。接触工艺和结构的改进显著地提高了器件性能。  相似文献   

5.
本文首先简要地介绍了国外双栅砷化镓场效应晶体管的发展情况,接着比较了单栅与双栅砷化嫁场效应晶体管的直流与微波性能,最后着重介绍了双栅器件的电路应用。  相似文献   

6.
做出了10千兆赫微波频率下低噪声放大砷化镓场效应晶体管,使固体放大器频率范围比使用硅晶体管提高2~3倍。GaAs FET 最高振荡频率达30千兆赫,8千兆赫和16千兆赫下测得的功率增益分别为8分贝和3分贝,见图1。4千兆赫下噪声3分贝,低于迄今为止报导的晶体管噪声水平。此外,场效应晶体管噪声随频率的变化较小,8千兆赫下仅为5分贝,见图2。器件制于半绝缘 GaAs 衬底上的10~(17)厘米~(-3)掺硫外延薄膜上。外延层必须很薄(约0.3  相似文献   

7.
据报导,美国无线电公司采用一层掺铬的高阻砷化镓外延缓冲层作为器件有源区与单晶衬底之间的本体生长衬底之间的隔离,制出了一种革新的中功率砷化镓场效应晶体管(肖特基场效应晶体管)。据称,一个单元的器件在9千兆赫下以1分贝增益压缩,得到了高达300毫瓦的输出功率,5.2分贝的线性增益以及30%的漏极效率。三个单元的器件,在4千兆赫下以1分贝的增益压缩,实现了665毫瓦的输出功率,8分贝的线性  相似文献   

8.
本文介绍 X 波段 GaAs 功率 FET 的设计考虑、工艺特点和电特性。采用53条梳状源、52条漏和1条连接104条平行的肖特基栅的复盖栅来实现栅长1.5微米、栅宽5200微米的 FFT。研究成功了一种面接地技术,以便把共源引线电感减到最小(L_s=50微微法)。研制出的器件在10千兆赫下给出0.7瓦,8千兆赫下给出1.6瓦的饱和输出功率。在6千兆赫下,1分贝增益压缩时,线性增益为7分贝,输出功率为0.85瓦,并得到30%的功率附加效率。在6.2千兆赫下,三次互调制分量的截距为37.5分明亳瓦。  相似文献   

9.
瑞士朱利克研究实验室研制成一种新型的场效应晶体管,其噪声-增益性能优于任何双极或场效应晶体管的性能。在6千兆赫下,其噪声为5.8分贝,有用增益为8.5分贝。据称,与硅器件比较,在该器件中须考虑一个附加的噪声源——谷间散射噪声。如果载流子从中心能谷散射到迁移率大大减小的子能谷时,就产生这种噪声。  相似文献   

10.
砷化镓肖特基势垒场效应晶体管的噪声性能已在理论和实验上作了研究。已经发现,当偏置加于夹断区时,砷化镓场效应晶体管还有另外一种噪声源——谷间散射噪声。研究了这种噪声源并提出了一种新的晶体管噪声模型。在2~10千兆赫频率范围内,测量和计算的噪声系数很好地一致。可以看出,减薄沟道厚度可减小谷间散射噪声的影响。该器件在 X 波段下具有极好的增益和噪声特性。  相似文献   

11.
12.
自1966年 C·A·Mead 提出肖特基势垒栅砷化镓场效应晶体管(以下称为 GaAsMES-FET)以来,经过精心的研究,其性能已有显著地改进,特别是近年来,随着以通信卫星为主的通信系统的进展,迫切地希望低噪声器件在 S~X 波段上的实用化。然而,过去这多半还是靠参量二极管、变容二极管以及双极晶体管来实现的。其主要原因则是GaAsMESFET 研制时间不长,缺乏关于其应用电路技术和器件可靠性等方面的经验。然而,随着这些问题的逐步明确,预期这种 GaAsMESFET 将在今后各个领域内得到广泛应用。本文将以1微米栅的 GaAsMESFET 为主,叙述 MESFET 的应用。  相似文献   

13.
本文介绍 X 波段砷化镓功率场效应晶体管(FET)的测量结果。这些器件是用简单的平面工艺制作的。多个单元并联的器件在9千兆赫下,输出功率大于1瓦,增益大于4分贝。4分贝增益下,最大输出功率在9千兆赫下为1.78瓦,在8千兆赫下为2.5瓦。8千兆赫下,器件功率附加效率为46%。  相似文献   

14.
如果工艺问题得到解决,砷化镓肖特基势垒场效应晶体管就可实现高速。图1示出功率一增益与频率的关系曲线。预先进行测试,系统的误差约为±1分贝。频率达17千兆赫,预计 fmax(?)30千兆赫。这种晶体管的有源层为外延生长的砷化镓,它由镓/三氯化砷汽相工艺淀积而成。其厚度为0.27微米,n 型(掺硒)。迁移率μ=2600厘米~2/伏·秒,自由载流子浓度 n=6×10~(16)厘  相似文献   

15.
北美砷化镓会议录论文集中的“用硒离子注入制造砷化镓场效应晶体管”这篇文章介绍了罗克韦尔国际科学中心采用离子注入技术取代外延生长技术形成有源层,制造出接近于理论特性的低噪声砷化镓场效应晶体管。对于栅长0.9微米的器件,论证了增益与频率的特性。结果表明,最大振荡频率超过50千兆赫。在10千兆赫下,典型噪声系数为3.5分贝,而增益为7分贝。经挑选,有些器件,在10千兆赫下,噪声系数可低达3.3分贝,而最大可用增益为11.5分贝左右。J.A.Higgins 等人宣称“对于相同几何图形的 FET,1976年 Hewitt 等人计算出了噪声系数的最佳值为3.5分贝,这就证明离子注入的晶体管与理论预计的特性相符。”  相似文献   

16.
在10千兆赫下单向功率增益为12分贝和最高振荡频率为40千兆赫的肖特基势垒栅砷化镓场效应晶体管已经研制成功,如图1所示。器件制作在锡掺杂的N型外延层上,该层是在半绝缘的<100>晶向的砷化镓衬底上从镓溶液中外延生长的。0.3微米厚度的外延层的掺杂浓度是7×10~(16)厘米~(-3),在同一薄层上测量到的迁移率是5000厘米~2/伏·秒。器件结构如图2所示。栅是铬-金做的,其厚为0.5微米,长为0.9微米,宽为500微米。它是由接触曝光和剥离工艺制造的。源-漏是金-锗合金接触。源和栅的间距是1微  相似文献   

17.
本文叙述离子注入在制作GaAsFET中的应用情况,以及与此有关的退火及衬底选择问题,最后介绍一些用离子注入制作的GaAsFET的性能结果。  相似文献   

18.
用硫离子直接注入掺铬半绝缘衬底作成沟道区,制成了砷化镓微波场效应晶体管,这样就避免了生长外延层。这一离子注入法已用于制作0.25微米厚、厚度及载流子浓度均匀的n型层,对不同的样品载流子迁移率在2410~3620厘米2/伏·秒范围。由于均匀性好,用此注入层制作的场效应晶体管同一个片子上各个管芯的跨导和夹断电压重复性好,其偏差不超过±10%。通常,掺铬的砷化镓满足于制作场效应晶体管,然而为了获得最高的迁移率希望铬的补偿最小。表征微波特性的S参数测量推算出f_(max)=20千兆赫,然而因阻抗失配和管壳参量的影响,传输增益大约在7千兆赫截止。  相似文献   

19.
本文介绍了砷化镓微波肖特基势垒场效应晶体管源漏接触之间自动对准栅接触的方法。这个方法包括了源漏接触边缘下面砷化镓外延层的腐蚀以及用伸出部分作为栅接触金属的蒸发掩模。用这种方法制造的器件,栅长为4微米。微波测量的结果:在2千兆赫下最大可用增益为16分贝,按6分贝/倍频程下降,截止频率为11千兆赫。  相似文献   

20.
一、发展概况早在五十年代初期,肖克莱就提出了关于场效应晶体管的基本工作原理。由于材料和工艺方面的原因,在相当长的时间内进展迟缓。自1966年C.A.Mead提出砷化镓肖特基势垒栅场效应晶体管(GaAsMESFET)以来,普遍认为它可望成为一种很好的微波器件,竞相投入力量进行研制。1970年后,在砷化镓材料和制管工艺方面都有重大突破,从而使器件性能水平迅速提高。 1972年,GaAsMESFET已达到在10千兆赫下,噪声系数3.5分贝,增益6.6分贝。远远超过硅双极晶体管的性能。而且也提出了考虑到载流子速度饱和谷间散射的噪声模  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号