首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel method has been developed for the speciation of chromium in natural water samples based on cloud point extraction (CPE) separation and preconcentration, and determination by graphite furnace atomic absorption spectrometry (GFAAS). In this method, Cr(III) reacts with 1-phenyl-3-methyl-4-benzoylpyrazol-5-one (PMBP) yielding a hydrophobic complex, which then is entrapped in the surfactant-rich phase, whereas Cr(VI) remained in aqueous phase. Thus, separation of Cr(III) and Cr(VI) could be realized. Total chromium was determined after the reduction of Cr(VI) to Cr(III) by using ascorbic acid as reducing reagent. PMBP was used not only as chelating reagent in CPE procedure, but also as chemical modifier in GFAAS determination of chromium. The detection limit for Cr(III) was 21 ng L(-1) with an enrichment factor of 42, and the relative standard deviation was 3.5% (n=7, c=10 ng mL(-1)). The proposed method has been applied to the speciation of chromium in natural water samples with satisfactory results.  相似文献   

2.
A new method based on the cloud point extraction (CPE) preconcentration and graphite furnace atomic absorption spectrometry (GFAAS) detection was proposed for the determination of trace nickel in water samples. When the micelle solution temperature is higher than the cloud point of surfactant p-octylpolyethyleneglycolphenyether (Triton X-100), the complex of Ni2+ with 1-phenyl-3-methyl-4-benzoyl-5-pyrazolone (PMBP) could enter surfactant-rich phase and be concentrated, then determined by GFAAS. The main factors affecting the cloud point extraction were investigated in detail. An enrichment factor of 27 was obtained for the preconcentration of Ni2+ with 10 mL solution. Under the optimal conditions, the detection limit of Ni2+ is 0.12 ng mL(-1) with R.S.D. of 4.3% (n = 10, c = 100 ng mL(-1)). The proposed method was applied to determination of trace nickel in water samples with satisfactory results.  相似文献   

3.
A cloud point extraction (CPE) method for the preconcentration of trace aluminum prior to its determination by graphite furnace atomic absorption spectrometry (GFAAS) has been developed. The CPE method is based on the complex of Al(III) with 1-phenyl-3-methyl-4-benzoyl-5-pyrazolone (PMBP), and then entrapped in non-ionic surfactant Triton X-114. PMBP was used not only as chelating reagent in CPE preconcentration, but also as chemical modifier in GFAAS determination. The main factors affecting CPE efficiency, such as pH of sample solution, concentration of PMBP and Triton X-114, equilibration temperature and time, were investigated in detail. An enrichment factor of 37 was obtained for the preconcentration of Al(III) with 10 mL solution. Under the optimal conditions, the detection limit of this method for Al(III) is 0.09 ng mL(-1), and the relative standard deviation is 4.7% at 10 ng mL(-1) Al(III) level (n=7). The proposed method has been applied for determination of trace amount of aluminum in biological and water samples with satisfactory results.  相似文献   

4.
A flow injection (FI) micelle-mediated separation/preconcentration procedure for the determination of lead and cadmium by flame atomic absorption spectrometry (FAAS) has been proposed. The analytes reacted with 1-(2-thiazolylazo)-2-naphthol (TAN) to form hydrophobic chelates, which were extracted into the micelles of 0.05% (w/v) Triton X-114 in a solution buffered at pH 8.4. In the preconcentration stage, the micellar solution was continuously injected into a flow system with four mini-columns packed with cotton, glass wool, or TNT compresses for phase separation. The analytes-containing micelles were eluted from the mini-columns by a stream of 3molL(-1) HCl solution and the analytes were determined by FAAS. Chemical and flow variables affecting the preconcentration of the analytes were studied. For 15mL of preconcentrated solution, the enhancement factors varied between 15.1 and 20.3, the limits of detection were approximately 4.5 and 0.75microgL(-1) for lead and cadmium, respectively. For a solution containing 100 and 10microgL(-1) of lead and cadmium, respectively, the R.S.D. values varied from 1.6 to 3.2% (n=7). The accuracy of the preconcentration system was evaluated by recovery measurements on spiked water samples. The method was susceptible to matrix effects, but these interferences were minimized by adding barium ions as masking agent in the sample solutions, and recoveries from spiked sample varied in the range of 95.1-107.3%.  相似文献   

5.
bis-[2-Hydroxy-1-naphthaldehyde] thiourea was synthesized and preconcentration cloud point extraction (CPE) for speciation determination of chromium(III) and (VI) in various environmental samples with flame atomic absorption spectrometry (FAAS) has been developed. Chromium(III) complexes with bis-[2-hydroxynaphthaldehyde] thiourea is subsequently entrapped in the surfactant micelles. After complexation of chromium(III) with reagent, the analyte was quantitatively extracted to the surfactant-rich phase in the non-ionic surfactant Triton X-100 after centrifugation. The effect of pH, concentration of chelating agent, surfactant, equilibration temperature and time on CPE was studied. The relative standard deviation was 2.13% and the limits of detection were around 0.18 μg L−1.  相似文献   

6.
A new micell-mediated phase separation method for preconcentration of ultra-trace quantities of cadmium as a prior step to its determination by flame atomic absorption spectrometry has been developed. The method is based on the cloud point extraction (CPE) of cadmium in iodide media with Triton X-114 in the absence of any chelating agent. The optimal extraction and reaction conditions (e.g., acid concentration, iodide concentration, effect of time) were studied, and the analytical characteristics of the method (e.g., limit of detection, linear range, preconcentration, and improvement factors) were obtained. Linearity was obeyed in the range of 3-300 ng mL(-1) of cadmium. The detection limit of the method is 1.0 ng mL(-1) of cadmium. The interference effect of some anions and cations was also tested. The method was applied to the determination of cadmium in tap water, waste water, and sea water samples.  相似文献   

7.
In this study, in order to eliminate the drawbacks of elution step and to reach higher enrichment factors, a novel preconcentration/separation technique for the slurry analysis of sorbent loaded with lead prior to its determination by electrothermal atomic absorption spectrometry was described. For this purpose, at first, lead was collected on ethylene glycol dimethacrylate methacrylic acid copolymer (EGDMA-MA) treated with ammonium pyrolidine dithiocarbamate (APDC) by conventional batch technique. After separation of liquid phase, slurry of the sorbent was prepared and directly pipetted into graphite furnace of atomic absorption spectrophotometer. Optimum conditions for quantitative sorption and preparation of the slurry were investigated. A 100-fold enrichment factor could be easily reached.

The analyte element in certified sea-water and Bovine-liver samples was determined in the range of 95% confidence level. The proposed technique was fast and simple and the risks of contamination and analyte loss were low. Detection limit (3δ) for Pb was 1.67 μg l−1.  相似文献   


8.
A separation/preconcentration procedure using solid phase extraction has been proposed for the flame atomic absorption spectrometric determination of copper and nickel at trace level in food samples. The solid phase is Dowex Optipore SD-2 resin contained on a minicolumn, where analyte ions are sorbed as 5-methyl-4-(2-thiazolylazo) resorcinol chelates. After elution using 1 mol L(-1) nitric acid solution, the analytes are determinate employing flame atomic absorption spectrometry. The optimization step was performed using a full two-level factorial design and the variables studied were: pH, reagent concentration (RC) and amount of resin on the column (AR). Under the experimental conditions established in the optimization step, the procedure allows the determination of copper and nickel with limit of detection of 1.03 and 1.90 microg L(-1), respectively and precision of 7 and 8%, for concentrations of copper and nickel of 200 microg L(-1). The effect of matrix ions was also evaluated. The accuracy was confirmed by analyzing of the followings certified reference materials: NIST SRM 1515 Apple leaves and GBW 07603 Aquatic and Terrestrial Biological Products. The developed method was successfully applied for the determination of copper and nickel in real samples including human hair, chicken meat, black tea and canned fish.  相似文献   

9.
10.
A cloud point extraction procedure was presented for the preconcentration of copper, nickel and cobalt ions in various samples. After complexation with methyl-2-pyridylketone oxime (MPKO) in basic medium, analyte ions are quantitatively extracted to the phase rich in Triton X-114 following centrifugation. 1.0 mol L−1 HNO3 nitric acid in methanol was added to the surfactant-rich phase prior to its analysis by flame atomic absorption spectrometry (FAAS). The adopted concentrations for MPKO, Triton X-114 and HNO3, bath temperature, centrifuge rate and time were optimized. Detection limits (3 SDb/m) of 1.6, 2.1 and 1.9 ng mL−1 for Cu2+, Co2+ and Ni2+ along with preconcentration factors of 30 and for these ions and enrichment factor of 65, 58 and 67 for Cu2+, Ni2+ and Co2+, respectively. The high efficiency of cloud point extraction to carry out the determination of analytes in complex matrices was demonstrated. The proposed procedure was applied to the analysis of biological, natural and wastewater, soil and blood samples.  相似文献   

11.
Nanometer titanium dioxide immobilized on silica gel (immobilized nanometer TiO2) was prepared by sol-gel method and characterized using X-ray diffraction (XRD) and scanning electron microscope (SEM). The adsorptive capability of immobilized nanometer TiO2 for lead was assessed in this work using column method. It was found that lead can be quantitatively retained by immobilized nanometer TiO2 in the pH range 4-7, then eluted completely with 1.0molL(-1) HCl. The adsorption capacity of immobilized nanometer TiO2 for Pb was found to be 3.16mgg(-1). A new method has been developed for the determination of trace lead based on preconcentration with a microcolumn packed with immobilized nanometer TiO2 prior to its determination by graphite furnace atomic absorption spectrometry (GFAAS). The detection limit of this method for Pb was 9.5ngL(-1) with an enrichment factor of 50, and the relative standard deviations (R.S.D.s) was 3.2% at the 10ngmL(-1) Pb level. The method was validated using a certified reference material, and was applied for the determination of trace lead in water samples.  相似文献   

12.
13.
A cloud point extraction process using the nonionic surfactant Triton X-114 for extracting mercury from aqueous solutions was investigated. The method is based on the complexation reaction of Hg(II) with Thio-Michler's Ketone (TMK) and micelle-mediated extraction of the complex. The optimal extraction and reaction conditions (e.g., pH, reagent concentration, effect of time) were studied, and the analytical characteristics of the method (e.g., limit of detection, linear range) were obtained. Linearity was obeyed in the range of 5.0-80.0 ng mL(-1) of Hg(II) ion. The detection limit of the method was 0.83 ng mL(-1) of Hg(II) ion. The interference effect of some anions and cations was also tested. The method was applied to the determination of mercury in water samples.  相似文献   

14.
A preconcentration/separation technique based on the coprecipitation of lead with cobalt/pyrrolidine dithiocarbamate complex (Co(PDC)(2)) and subsequently its direct slurry sampling determination by electrothermal atomic absorption spectrometry (AAS) was described. For this purpose, at first, lead was coprecipitated with cobalt/pyrrolidine dithiocarbamate complex formed using ammonium pyrrolidine dithiocarbamate (APDC) as a chelating agent and cobalt as a carrier element. The supernatant was then separated and the slurry of the precipitate prepared in Triton X-100 was directly analyzed by electrothermal atomic absorption spectrometry with respect to lead concentration. The effects of experimental conditions on coprecipitation of lead with gathering precipitate as well as homogeneity and stability of the slurry were investigated. After the optimization of experimental parameters, a 100-fold enrichment of the analyte with quantitative recovery (>90%) and high precision (<10% R.S.D.) were obtained. By using the proposed technique, the lead concentrations in heavy matrices of Certified Sea-water and wastewater samples could be practically and rapidly determined in the range of 95% confidence level. The detection limit of the described method for lead using sample-matching blanks was 1.5ng/L (3sigma, N=10).  相似文献   

15.
Manganese and copper in multivitamin-mineral supplements and standard reference materials were determined by slurry sampling electrothermal atomic absorption spectrometry. Slurries were prepared in an aqueous solution containing Triton X-100. The effects of different parameters such as ratio of solid to liquid phase volume, total slurry volume and addition of Triton X-100 as a dispersant on the analytical results were investigated. The graphite furnace programs were optimized for slurry sampling depending on the analytes and their concentrations in the samples. The linear calibration method with aqueous standard solutions was used for the quantification. At optimum experimental conditions, R.S.D. values were below 5%. The analytes were determined in the limits of 95% confidence level with respect to certified values in coal and soil standard reference materials and to those found by wet-digestion in multivitamin-mineral supplements. Detection limits (3delta) for Mn and Cu were 0.10 microg L(-1) and 1.82 microg L(-1) for 10 microL coal standard reference material slurry, respectively.  相似文献   

16.
Yan XP  Sperling M  Welz B 《Analytical chemistry》1999,71(19):4353-4360
A flow injection manifold with an air-segmented and air-transported operational sequence for on-line coupling of microcolumn separation and preconcentration to electro-thermal atomic absorption spectrometry (ETAAS) was developed for the determination of (ultra)trace selenite and selenate in water. The determination of selenite was achieved by selective reaction with pyrrolidine dithiocarbamate (PDC), sorption of the resultant Se-PDC compound onto a conical microcolumn (10.2 microL) packed with RP C18 sorbent, elution with ethanol, and detection by ETAAS. The concentration of selenate was obtained as the difference between the concentrations of selenite after and before prereduction of selenate to selenite. With the developed manifold and operation sequence,the dispersion during elution and eluate transport and the eluent volume required for complete elution of the sorbed analyte were minimized. As a result, the sorbed analyte was quantitatively eluted from the column with only 26 microL of ethanol, and all the eluate was automatically introduced into the graphite tube by an air flow without the need of preheating the graphite tube or precise timing. Pretreatment of the graphite tube with iridium as a long-term "permanent" modifier effectively prevented analyte loss arising from the high volatility of the Se-PDC compound and greatly improved the precision, sensitivity, and detection limit. One thermal pretreatment of the graphite tube with injection of 150 microgram of iridium made possible at least 200 repetitive atomization cycles. With a preconcentration time of 180 s and a sample flow rate of 1.4 mL min(-1), an enhancement factor of 112 was achieved in comparison with direct injection of 30 microL of aqueous solution. The detection limit (3s) was 4.5 ng L(-1)Se. The RSD (n = 7) was 3.8% at 20 ng L(-1)Se. The concentrations of selenite and selenate determined in synthetic aqueous mixtures were in good agreement with the expected values. The recoveries for selenite from spiked seawater samples ranged from 98 to 102%. The concentrations of selenite in several seawater reference materials obtained with simple aqueous standard solutions for calibration agreed well with the certified and information values, respectively. In addition, the developed method was successfully applied to the certification of selenite and selenate in water.  相似文献   

17.
The present paper outlines novel, simple and sensitive method for the determination of palladium by flame atomic absorption spectrometry (FAAS) after separation and preconcentration by cloud point extraction (CPE). The cloud point methodology was successfully applied for palladium determination by using new reagent 4-(2-naphthalenyl)thiozol-2yl azo chromotropic acid (NTACA) and hydrophobic ligand Triton X-114 as chelating agent and nonionic surfactant respectively in the water samples and alloys. The following parameters such as pH, concentration of the reagent and Triton X-114, equilibrating temperature and centrifuging time were evaluated and optimized to enhance the sensitivity and extraction efficiency of the proposed method. The preconcentration factor was found to be (50-fold) for 250 ml of water sample. Under optimum condition the detection limit was found as 0.067 ngml(-1) for palladium in various environmental matrices. The present method was applied for the determination of palladium in various water samples, alloys and the result shows good agreement with reported method and the recoveries are in the range of 96.7-99.4%.  相似文献   

18.
19.
20.
Due to the consumption of chicken and chicken products in Turkey at high ratio, trace metal content of chicken and chicken products from Turkey were determined by atomic absorption spectrometry after microwave digestion. The accuracy of the method was confirmed by analysis of standard reference material (NIST SRM 1577b Bovine liver). Trace element content in various parts of chicken samples and chicken products were to be in the range of 0.10-114 microg/g for copper, 0.25-6.09 microg/kg for cadmium, 0.01-0.40 microg/g for lead, 0.10-0.91 microg/g for selenium, 0.05-3.91 microg/g for manganese, 0.06-0.10 microg/g for arsenic, 0.01-0.72 microg/g for chromium, 0.01-2.08 microg/g for nickel, 0.01-0.02 microg/g for cobalt, 0.10-1.90 microg/g for aluminium, 1.21-24.3 microg/g for zinc, 2.91-155 microg/g for iron. The levels of lead in some analyzed chicken products were higher than the recommended legal limits for human consumption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号