首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 679 毫秒
1.
A simplified numerical model for simulation of floodplain inundation resulting from naturally occurring floods in rivers is presented. Flow through the river is computed by solving the de Saint Venant equations with a one-dimensional (1D) finite volume approach. Spread of excess flood water spilling overbank from the river onto the floodplains is computed using a storage cell model discretized into an unstructured triangular grid. Flow exchange between the one-dimensional river cells and the adjacent floodplain cells or that between adjoining floodplain cells is represented by diffusive-wave approximated equation. A common problem related to the stability of such coupled models is discussed and a solution by way of linearization offered. The accuracy of the computed flow depths by the proposed model is estimated with respect to those predicted by a two-dimensional (2D) finite volume model on hypothetical river-floodplain domains. Finally, the predicted extent of inundation for a flood event on a stretch of River Severn, United Kingdom, by the model is compared to those of two proven two-dimensional flow simulation models and with observed imagery of the flood extents.  相似文献   

2.
Distributed Sensitivity Analysis of Flood Inundation Model Calibration   总被引:8,自引:0,他引:8  
Uncertainties in hydrodynamic model calibration and boundary conditions can have a significant influence on flood inundation predictions. Uncertainty analysis involves quantification of these uncertainties and their propagation through to inundation predictions. In this paper the inverse problem of sensitivity analysis is tackled, in order to diagnose the influence that model input variables, together and in combination, have on the uncertainty in the inundation model prediction. Variance-based global sensitivity analysis is applied to simulation of a flood on a reach of the River Thames (United Kingdom) for which a synthetic aperture radar image of the extent of flooding was available for model validation. The sensitivity analysis using the method of Sobol’ quantifies the significant influence of variance in the Manning channel roughness coefficient in raster-based flood inundation model predictions of flood outline and flood depth. The spatial influence of the Manning channel roughness coefficient is analyzed by dividing the channel into subreaches and calculating variance-based sensitivity indices for each subreach. Replicated Latin hypercube sampling is used for sensitivity analysis with correlated input variables. The methodology identifies subreaches of channel that have the most influence on variance in the model predictions, demonstrating how far boundary effects propagate into the model and indicating where further data acquisition and nested higher-resolution model studies should be targeted.  相似文献   

3.
Ice jam release surges present a unique challenge to the flood forecaster, since the surge released when an ice jam fails is highly dynamic in nature and, therefore, traditional hydrologic flood routing techniques are inapplicable. The problem is analogous to the classic dam break scenario and should be amenable to analysis by hydraulic flood routing techniques. However, previous investigations suggest that the influence of ice on the wave propagation and attenuation must also be considered to achieve accurate results. This study explores the applicability of dynamic hydraulic flow modeling techniques to the ice jam surge propagation problem, presenting the results of numerical simulations of the ice jam release event which occurred on the Saint John River upstream of Grand Falls, N.B., in April 1993. The surge propagation analysis was conducted using a one-dimensional finite element implementation of the Saint Venant equations adapted for natural channel geometries. Even neglecting ice effects, the resulting model is successful in terms of reproducing the observed peak stage and the surge propagation speed. Based on these results, it is concluded that accurate channel geometry is a key factor in effectively modeling ice jam release surge events.  相似文献   

4.
This paper proposes an efficient mathematical model of an automatic upstream water-level control gate, called a Begemann or flap gate. This automatic gate controls the upstream level close to a reference level for free gate flow, using a counterweight to compensate for the hydraulic pressure on the gate. The proposed gate model is designed to be included in a hydraulic simulation model. A discharge law for the gate is first derived using simple physical assumptions. Then a method to compute the static equilibrium is obtained by modeling the opening force exerted by the water on the gate. This mathematical model is validated on experimental data from a small-scale gate and on other data from the literature in order to show the ability of the model to simulate various gates.  相似文献   

5.
Flood Simulation Using a Well-Balanced Shallow Flow Model   总被引:4,自引:0,他引:4  
This work extends and improves a one-dimensional shallow flow model to two-dimensional (2D) for real-world flood simulations. The model solves a prebalanced formulation of the fully 2D shallow water equations, including friction source terms using a finite volume Godunov-type numerical scheme. A reconstruction method ensuring nonnegative depth is used along with a Harten, Lax, and van Leer approximate Riemann solver with the contact wave restored for calculation of interface fluxes. A local bed modification method is proposed to maintain the well-balanced property of the algorithm for simulations involving wetting and drying. Second-order accurate scheme is achieved by using the slope limited linear reconstruction together with a Runge-Kutta time integration method. The model is applicable to calculate different types of flood wave ranging from slow-varying inundations to extreme and violent floods, propagating over complex domains including natural terrains and dense urban areas. After validating against an analytical case of flow sloshing in a domain with a parabolic bed profile, the model is applied to simulate an inundation event in a 36?km2 floodplain in Thamesmead near London. The numerical predictions are compared with analytical solutions and alternative numerical results.  相似文献   

6.
Emergency flood management is enhanced by using models that can estimate the timing and location of flooding. Typically, flood routing and inundation prediction is accomplished by using one-dimensional (1D) models. These have been the models of choice because they are computationally simple and quick. However, these models do not adequately represent the complex physical processes present for shallow flows located in the floodplain or in urban areas. Two-dimensional (2D) models developed on the basis of the full hydrodynamic equations can be used to represent the complex flow phenomena that exist in the floodplain and are, therefore, recommended by the National Research Council for increased use in flood analysis studies. The major limitation of these models is the increased computational cost. Two-dimensional flood models are prime candidates for parallel computing, but traditional methods/equipment (e.g., message passing paradigm) are more complex in terms of code refactoring and hardware setup. In addition, these hardware systems may not be available or accessible to modelers conducting flood analyses. This paper presents a 2D flood model that implements multithreading for use on now-prevalent multicore computers. This desktop parallel computing architecture has been shown to decrease computation time by 14 times on a 16-processor computer and, when coupled with a wet cell tracking algorithm, has been shown to decrease computation by as much as 310 times. These accomplishments make high-fidelity flood modeling more feasible for flood inundation studies using readily available desktop computers.  相似文献   

7.
Geosynthetic-reinforced column-supported (GRCS) embankments have increasingly been used in the recent years for accelerated construction. Numerical analyses have been conducted to improve understanding and knowledge of this complicated embankment system. However, most studies so far have been focused on its short-term or long-term behavior by assuming an undrained or drained condition, which does not consider water flow in saturated soft soil (i.e., consolidation). As a result, very limited attention has been paid to a settlement-time relationship especially postconstruction settlement, which is critical to performance of pavements on embankments or connection between approach embankments and bridge abutments. To investigate the time-dependent behavior, coupled two-dimensional mechanical and hydraulic numerical modeling was conducted in this study to analyze a well-instrumented geotextile-reinforced deep mixed column-supported embankment in Hertsby, Finland. In the mechanical modeling, soils and DM columns were modeled as elastic-plastic materials and a geotextile layer was modeled using cable elements. In the hydraulic modeling, water flow was modeled to simulate generation and dissipation of excess pore water pressures during and after the construction of the embankment. The numerical results with or without modeling water flow were compared with the field data. In addition, parametric studies were conducted to further examine the effects of geosynthetic stiffness, column modulus, and average staged construction rate on the postconstruction settlement and the tension in the geosynthetic reinforcement.  相似文献   

8.
The performance of a combined sewer overflow (CSO) storage/treatment facility in North Toronto, Ont., Canada, was investigated by conjunctive numerical and physical (hydraulic) modeling. The main objectives of the study were to (1) assess the feasibility of increasing the hydraulic loading of the CSO facility without bypassing; and (2) establish a verified numerical model of the facility for future work. The numerical model [a commercial computational fluid dynamics (CFD), PHOENICS] was validated and verified using results from a hydraulic scale model (1:11.6). The results obtained show that the CFD model can simulate hydraulic conditions in the facility well, as demonstrated by accurate reproduction of the filling rate, water levels at various locations, flow velocities in feed pipes, and overflows from the inflow channel. Numerical simulations identified excessive local head losses and helped select structural changes to reduce such losses. The analysis of the facility showed that with respect to hydraulic operation, the facility is a complex, highly nonlinear hydraulic system. Within the existing constraints, a few structural changes examined by numerical simulation could increase the maximum treatment flow rate in the CSO storage/treatment facility by up to 31%.  相似文献   

9.
The Yuen Long Bypass Floodway (YLBF) was designed to collect flows from the Sham Chung River (SCR) and the San Hui Nullah (SHN) and to serve as a diversion channel of the Yuen Long Main Nullah (YLMN). Under a 200-year return period design condition, the floodway was designed (1) to divert a flow of approximately 38?m3/s from the supercritical YLMN flow and (2) to convey a total combined flow of 278?m3/s to downstream within acceptable flood levels. The success of the design depends critically on complicated junction flow interactions that cannot be resolved by 1D unsteady flow models. These features include the supercritical-subcritical flow transition at the San Hui-Floodway (SHN-YLBF) junction and the diversion of part of the supercritical flow from the Main Nullah (YLMN). A laboratory Froude scale physical model was constructed to study water stages and flow characteristics in the floodway and to investigate optimal design arrangements at channel junctions and transitions. This paper summarizes the main features of the unique river junction network, in particular the use of the hydraulic jet principle at the SHN-YLBF junction to lower flood levels. In addition, a numerical flow model is employed to study flow details at the river junctions. The model is based on the general 2D shallow water equations in strong conservation form. The equations are discretized using the total variation diminishing finite-volume method which captures the discontinuity in hydraulic jumps. The numerical model predictions are well supported by the laboratory data, and the theoretical and experimental results offer useful insights for the design of urban flood control schemes under tight space constraints.  相似文献   

10.
Modeling the Effects of Macrophytes on Hydrodynamics   总被引:1,自引:0,他引:1  
A computer model was created as a scientific and management tool for understanding the effects of macrophytes on hydrodynamics and water quality. A model was required that could simulate macrophytes in a complex water body and could be coupled to a multicompartment water quality model of phytoplankton, dissolved oxygen, nutrients, pH, and organic matter. This would permit the investigation of water resource issues where macrophyte growth, phytoplankton growth, nutrient loadings, and flood control were all contributing factors. The model was added as a compartment to the U.S. Army Corps of Engineers two-dimensional, laterally averaged, dynamic water quality model, CE-QUAL-W2 (Corps of Engineers, water quality, width averaged, two dimensional) and applied to the Columbia Slough, Ore. Features of the macrophyte model include the capability to simulate multiple submerged macrophyte species; transport of nutrient fluxes between plant biomass and the water column and/or sediments; growth limitation due to nutrient, light and temperature; simulation of the spatial distribution of macrophytes vertically and horizontally; the modeling of light attenuation in the water column caused by macrophyte concentration; and the modeling of open channel flow with channel friction due to macrophytes. The macrophyte model was tested through mass balances and sensitivity analyses. The modeling of channel friction was evaluated by comparing predicted water levels with data from tests conducted in a laboratory flume. Use of the model in the Columbia Slough showed reasonable predictive capability regarding estimated biomass and water level dynamics.  相似文献   

11.
1923 Gleno Dam Break: Case Study and Numerical Modeling   总被引:2,自引:0,他引:2  
On the morning of December 1, 1923, the Gleno Dam (located in the Central Italian Alps) suddenly collapsed a few days after the first complete reservoir filling. Nearly 4.5×106??m3 of water was released. The consequent inundation caused significant destruction along the downstream valley and a death toll of at least 356 lives. This failure is the only historical case of dam break caused by structural deficiencies that has occurred in Italy. As a result, it has deeply influenced the evolution of Italian regulations regarding dam design and hydraulic risk evaluation. However, in spite of its relevance, this event has never been characterized from a hydraulic standpoint. This paper reports the main information obtained from the analysis of a vast amount of historical documents regarding the Gleno Dam break to set up a case study useful for validating dam-break models in mountain settings. Moreover, it presents the main results of one-dimensional (1D) modeling of the dam break wave propagation accomplished with a first-order finite volume numerical scheme recently proposed in the literature for field applications. The overall effectiveness and reliability of the model are evaluated for this case characterized by very irregular topography. Finally, the practical relevance of several choices that the numerical reconstruction of this kind of event demands is tested.  相似文献   

12.
Physically based modeling of the interacting water flow during a furrow irrigation season can contribute to both a sustainable irrigation management and an improvement of the furrow irrigation efficiency. This paper presents a process based seasonal furrow irrigation model which describes the interacting one-dimensional surface–two-dimensional subsurface flow and crop growth during a whole growing period. The irrigation advance model presented in a previous study is extended to all hydraulic phases of an irrigation event. It is based on an analytical solution of the zero-inertia surface flow equations and is iteratively coupled with the two-dimensional subsurface flow model HYDRUS-2. A conceptual crop growth model calculates daily evaporation, transpiration and leaf area index. The crop model and HYDRUS-2 are coupled via its common boundaries, namely (1) by the flux across the soil-atmosphere interface; and (2) by the flux from the root zone, which is associated with the plant water uptake. We assume the water stress is the only environmental factor reducing crop development and hence final crop yield. The model performance is evaluated with field experimental data in the companion paper, Part II: Model Test and Evaluation (W?hling and Mailhol 2007).  相似文献   

13.
A methodology for using remotely sensed data to both generate and evaluate a hydraulic model of floodplain inundation is presented for a rural case study in the United Kingdom: Upton-upon-Severn. Remotely sensed data have been processed and assembled to provide an excellent test data set for both model construction and validation. In order to assess the usefulness of the data and the issues encountered in its use, two models for floodplain inundation were constructed: one based on an industry standard one-dimensional approach and the other based on a simple two-dimensional approach. The results and their implications for the future use of remotely sensed data for predicting flood inundation are discussed. Key conclusions for the use of remotely sensed data are that care must be taken to integrate different data sources for both model construction and validation and that improvements in ground height data shift the focus in terms of model uncertainties to other sources such as boundary conditions. The differences between the two models are found to be of minor significance.  相似文献   

14.
A spatially distributed and continuous hydrologic model focusing on total maximum daily load (TMDL) projects was developed. Hydrologic models frequently used for TMDLs such as the hydrologic simulation program—FORTRAN (HSPF), soil and water assessment tool (SWAT), and generalized watershed loading function (GWLF) differ considerably in terms of spatial resolution, simulated processes, and linkage flexibility to external water quality models. The requirement of using an external water quality model for simulating specific processes is not uncommon. In addition, the scale of the watershed and water quality modeling, and the need for a robust and cost-effective modeling framework justify the development of alternative watershed modeling tools for TMDLs. The hydrologic and water quality integration tool (HydroWAMIT) is a spatially distributed and continuous time model that incorporates some of the features of GWLF and HSPF to provide a robust modeling structure for TMDL projects. HydroWAMIT operates within the WAMIT structure, developed by Omni Environmental LLC for the Passaic River TMDL in N. J. HydroWAMIT is divided into some basic components: the hydrologic component, responsible for the simulation of surface flow and baseflow from subwatersheds; the nonpoint-source (NPS) component, responsible for the calculation of the subwatershed NPS loads; and the linkage component, responsible for linking the flows and loads from HydroWAMIT to the water quality analysis simulation program (WASP). HydroWAMIT operates with the diffusion analogy flow model for flow routing. HydroWAMIT provides surface runoff, baseflow and associated loads as outputs for a daily timestep, and is relatively easy to calibrate compared to hydrologic models like HSPF. HydroWAMIT assumes that the soil profile is divided into saturated and unsaturated layers. The water available in the unsaturated layer directly affects the surface runoff from pervious areas. Surface runoff from impervious areas is calculated separately according to precipitation and the impervious fractions of the watershed. Baseflow is given by a linear function of the available water in the saturated zone. The utility of HydroWAMIT is illustrated for the North Branch and South Branch Raritan River Watershed (NSBRW) in New Jersey. The model was calibrated, validated, and linked to the WASP. The NPS component was tested for total dissolved solids. Available weather data and point-source discharges were used to prepare the meteorological and flow inputs for the model. Digital land use, soil type datasets, and digital elevation models were used for determining input data parameters and model segmentation. HydroWAMIT was successfully calibrated and validated for monthly and daily flows for the NSBRW outlet. The model statistics obtained using HydroWAMIT are comparable with statistics of HSPF and SWAT applications for medium and large drainage areas. The results show that HydroWAMIT is a feasible alternative to HSPF and SWAT, especially for large-scale TMDLs that require particular processes for water quality simulation and minor hydrologic model calibration effort.  相似文献   

15.
The present study examines the flow around a self-occurring cluster bed form and the use of general computation fluid dynamics methods for hydraulic and geophysical flow applications. This is accomplished through a comprehensive experimental/numerical investigation. In the laboratory, cluster bed forms are first formed from movable sediment, and laser Doppler velocimeter measurements of two-dimensional fluid velocity are then taken around a formed cluster. A three-dimensional (3D) Reynolds averaged Navier-Stokes simulation of the physical cluster and flow conditions is then conducted using near-wall, shear stress transport (SST) turbulence modeling with the inclusion of hydraulic roughness, ks (R = 31,150, ks/h = 0.1, ks+ = 274, i.e., in the fully rough regime). SST near-wall modeling is advantageous compared to the more widely used wall functions approach for flows with significant roughness and flow separation because the model equations can be integrated down to the wall. Therefore, SST near-wall modeling makes no a priori assumption that the law of the wall is valid throughout the wall region of the flow. Additionally, it has the ability to intrinsically handle boundary roughness through the boundary condition for turbulent specific dissipation at the wall, allowing for wall functions to be bypassed in accounting for roughness effects. The study shows that in the wall region surrounding the cluster, flow is 3D and quite complex, with different scales of embedded flow structures dominating the cluster wake and leading to flow heterogeneities in pressure and bed-shear stress. Results also indicate that near-wall modeling with SST compared favorably with the experimental flow data without tuning of model constants.  相似文献   

16.
This article describes the hydraulic behavior of a mixed water level control hydromechanical gate present in several irrigation canals. The automatic gate is termed “mixed” because it can hold either the upstream water level or the downstream water level constant according to the flow conditions. Such a complex behavior is obtained through a series of side tanks linked by orifices and weirs. No energy supply is needed in this regulation process. The mixed flow gate is analyzed and a mathematical model for its function is proposed, assuming the system is at equilibrium. The goal of the modeling was to better understand the mixed gate function and to help adjust their characteristics in the field or in a design process. The proposed model is analyzed and evaluated using real data collected on a canal in the south of France. The results show the ability of the model to reproduce the function of this complex hydromechanical system. The mathematical model is also implemented in software dedicated to hydraulic modeling of irrigation canals, which can be used to design and evaluate management strategies.  相似文献   

17.
South Florida has a complex regional hydrologic system that consists of thousands of miles of networked canals, sloughs, highly pervious aquifers, open areas subjected to overland flow and sheet flow, agricultural areas and rapidly growing urban areas. This region faces equally complex problems related to water supply, flood control, and water quality management. Advanced computational methods and super fast computers alone have limited success in solving modern day problems such as these because the challenge is to model the complexity of the hydrologic system, while maintaining computational efficiency and acceptable levels of numerical errors. A new, physically based hydrologic model for South Florida called the regional simulation model (RSM) is presented here. The RSM is based on object oriented design methods, advanced computational techniques, extensible markup language, and geographic information system. The RSM uses a finite volume method to simulate two-dimensional (2D) surface and groundwater flow. It is capable of working with unstructured triangular and rectangular mesh discretizations. The discretized control volumes for 2D flow, canal flow and lake flow are treated as abstract “water bodies” that are connected by abstract “water movers.” The numerical procedure is designed to work with these and many other abstractions. An object oriented code design is used to provide robust and highly extensible software architecture. A weighted implicit numerical method is used to keep the model fully integrated and stable. A limited error analysis was carried out and the results were compared with analytical error estimates. The paper describes an application of the model to the L-8 basin in South Florida and the strength of this approach in developing models over complex areas.  相似文献   

18.
Results are presented to investigate the characteristics of turbulent flow in a pressure conduit, such as water supply pipes and flood discharging tunnels. The turbulent flow governing equations, the Reynolds-averaged Navier–Stokes equations, in conjunction with a k–ε turbulent model are numerically solved using SIMPLEC. The study focuses on the modeling and calculation of the flow velocity field, pressure distribution, and the incipient cavitation number of the surface irregularities in the conduit. Different types and sizes of irregularities are simulated for various incoming flow velocities. The computed results are in good agreement with laboratory experimental data.  相似文献   

19.
This paper presents a hydrodynamic and water quality modeling system for Wissahickon Creek, Pa. Past data show that high nutrient levels in Wissahickon Creek were linked to large diurnal fluctuations in oxygen concentration, which combining with the deoxygenation effect of carbonaceous biological oxygen demand (CBOD) causes violations of dissolved oxygen (DO) standards. To obtain quantitative knowledge about the cause of the DO impairment, an integrated modeling system was developed based on a linked environmental fluid dynamics code (EFDC) and water quality simulation program for eutrophication (WASP/EUTRO5) modeling framework. The EFDC was used to simulate hydrodynamic and temperature in the stream, and the resulting flow information were incorporated into the WASP/EUTRO5 to simulate the fate and transport of nutrients, CBOD, algae, and DO. The standard WASP/EUTRO5 model was enhanced to include a periphyton dynamics module and a diurnal DO simulation module to better represent the prototype. The integrated modeling framework was applied to simulate the creek for a low flow period when monitoring data are available, and the results indicate that the model is a reasonable numerical representation of the prototype.  相似文献   

20.
The particular challenges of modeling controlled water systems are discussed. The high degree of freedom due to the control structures increases the risk of producing the right output for the wrong reasons. On the other hand, many controlled water systems are (partly) manually operated or at least supervised by an operational water manager. The decisions of these managers are not as rigid as a computer simulated control strategy. Therefore, getting a very close fit with a water-system control model is mostly not possible. A modeling framework is proposed that takes advantage of the vast availability of measurement data in controlled water systems. The water level and flow data at control structures allow for intensive validation and subsystem calibration to reduce the degree of modeling freedom and to model separately the natural rainfall-runoff and hydrodynamic processes. The framework is successfully applied to improve a simulation model of the controlled water system of Rijnland, The Netherlands. The yearly volume error was reduced from 11% to less than 1% and as a consequence, the short-term peak events were modeled more accurately as well. The resulting water-system control model is more reliable for both design studies and operational decision support. The framework will contribute to prepare more reliable simulation models of controlled water systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号