首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The changes in channel geometry downstream of Hapcheon Dam, South Korea, are closely examined. Daily pulses of water from peak hydropower generation and from sudden sluice gate operations affect the 45-km reach of the Hwang River between the Hapcheon Reregulation Dam and the Nakdong River. From 1983 to 2003, the median bed-material size, d50, increased from 1.0 to 5.7 mm, and the bed slope of the reach decreased from 94 to 85 cm/km. The vertical riverbed degradation averaged 2.6 m for a distance of 20 km below the reregulation dam. A simple analytical model is developed to predict the increase in sediment transport and the river bed adjustments from flow pulses in comparison with steady flow discharges. Numerical model simulations confirm the theoretical prediction that sediment transport rates from daily pulses are 21% higher than for steady flow discharges. Unsteady sediment transport simulations indicate that the channel bed degradation should extend mostly 20–25 km below the reregulation dam and should not change much after 2013.  相似文献   

2.
In March of 2003, the 43?m wide, 2.2?m high St. Johns Dam (Sandusky River, Ohio) was breached to lower the water level in the reservoir. In November of the same year, the dam was removed in an effort to restore aquatic habitat and connectivity in the river. During both the breach and the dam removal, high resolution time series of discharge and suspended sediment concentrations were monitored 200?m downstream of the dam. Discharge and suspended sediment during the breach were not discernible from background values. In contrast, the dam removal resulted in a peak suspended sediment concentration of 59?mg/L and a peak discharge of 33.5?m3/s, which returned to background levels of 19?mg/L and 1.5?m3/s, respectively, approximately 8?h after the removal. The floodwave during the removal attenuated by 50% at the City of Fremont, 53?km downstream, illustrating the diffusive nature of the channel and the limited risk of flooding downstream. Levels of suspended sediment and discharge during the removal were comparable to subsequent discharge events. Spatial distributions of turbidity in and upstream of the dam pool and archived turbidity data from the City of Tiffin, 13?km downstream of the dam, suggest that sediments stored in the impoundment did not statistically enhance turbidity up to 2 years after the removal. Generally, the removal had a minor impact on water quality and posed no risk to public safety or to downstream aquatic habitats.  相似文献   

3.
The effects of the sediment regime on the flood level in the middle reach of the Yangtze River before and after the construction of the Three Gorges Dam (TGD) are investigated. Before the dam construction, the sediment regime has driven the flood level higher and higher over recent decades in the middle reach of the Yangtze River, which has reflected changes in the location and amount of sediment deposition. After dam completion, the magnitude and rate of channel degradation determines the process of flood stage lowering but they are difficult to estimate owing to insufficient understanding of the sediment discharge recovery process. To make a rational prediction of channel degradation of the Yangtze River downstream from the TGD, the sediment transport rate during channel degradation downstream from other dams is examined. It is found that, for any grain size, postdam sediment transport rates cannot exceed the predam level at any location along the downstream channel. Erosion amounts predicted for the reach downstream from the TGD before its closure are too high. In light of this, a numerical simulation of the channel degradation process is carried out. The results indicate that, although degradation takes place immediately after the TGD closure, the flood level in the middle reach of the Yangtze River will still remain at its predam condition in the following 20 years. This is determined not only by the regional characteristics of the middle reach of the Yangtze River but also by the common law of sediment transportation downstream from dams.  相似文献   

4.
This paper presents a study on the reservoir sedimentation processes in response to changes in incoming flow at the upstream and changes in the pool level at the downstream for Sanmenxia Reservoir, which is located on the middle reach of the Yellow River in China and has experienced serious sedimentation problems even since its impoundment in 1960. The hysteresis effect in reservoir sedimentation was used as the basis for analysis and its behavior was fully investigated throughout this study. The research found that the rise in the elevation of Tongguan, which is located in the backwater region at a distance of 113.5?km upstream of the Sanmenxia Dam, had a time delay of about 2?years compared with the sediment deposition in the reservoir area downstream of Tongguan. Moreover the accumulated sediment deposition in the reservoir area was closely related not only to the current year’s flow and dam operational conditions, but also to the preceding 3–4?years’ flow and dam operational conditions. Likewise the variation of Tongguan’s elevation was a function of 6?years’ linearly superimposed runoff, and the channel bed slope in the vicinity of Tongguan was determined by a moving average pool level over a 7?year period. The research results are of practical importance in particular for optimizing the operation of Sanmenxia Dam, and the finding of the hysteresis phenomenon in the sedimentation process of the reservoir is of merit to the advancement of sedimentation science.  相似文献   

5.
The high sediment load of the Yellow River results in rapid infilling of its reservoirs when sediment is not regularly flushed. Simultaneously, the downstream reaches of the Yellow River experience extremely high siltation rates, which are reduced when sediment is retained in its reservoirs. To minimize siltation in the reservoirs and the downstream river bed, water and sediment are released from the reservoir in a controlled way through flushing experiments. In this paper, we analyze the effect of such a flushing event on the downstream river bed through data analysis and numerical modeling. Sedimentation may be minimized by relating the amount of sediment released from the reservoir to the sediment available for release through operational monitoring and by releasing relatively clear water after turbid water. Despite this flushing of sediment, the reservoir will eventually fill up, and more sediment released again into the lower Yellow River. The change in discharge magnitude and frequency brought about by the reservoir will then probably result in increased siltation rates in the lower Yellow River compared to the predam situation.  相似文献   

6.
Turbulence must be modeled accurately to simulate river processes, particularly transport of aqueous oxygen and nitrogen. Spillway operations affect downstream turbulence, but there has been little research on turbulence intensities downstream of stilling basins. For this study, laboratory measurements were taken on a three-dimensional, physical model of McNary Dam, Columbia River, United States to determine how the turbulence, initially generated by spillway flow, decreases with distance downstream. The experiments also examined how flow rate, tailwater depth, and the presence of spillway deflectors affect turbulence. A mathematical analysis was used to predict turbulent kinetic energy with distance, and good agreement was found between laboratory measurements and numerical predictions. Turbulence production generated by channel bed roughness was found to be small compared to turbulent energy dissipation, and the effect of flow separation related to bed irregularities on turbulence production was found to be negligible.  相似文献   

7.
Simulation of flow and sediment transport in mountain streams is complicated by the presence of high gradients, abrupt changes in geometry, variations in regime of flow, and large roughness elements. Most of the numerical models to predict aggradation and degradation in alluvial channels have been developed for low-gradient rivers. This paper is devoted to the development of a numerical model to calculate bed elevation and grain size distribution changes in mountain streams where the maximum bed material size is in the range of boulders. An attempt is made to validate the model by using observed field data collected upstream from a small retention dam in a Venezuelan stream. After calibration of the sediment transport equation, reasonable agreement is obtained for the variations in the grain size distribution of the bed-surface material. An additional application is presented in the Cocorotico River, a small mountain stream located in the northwest region of Venezuela, which illustrates the adaptability of the model to handle a case of coarsest-bed-material removal from the active channel and to simulate the armoring process.  相似文献   

8.
This paper presents a two-dimensional morphological model for unsteady flow and both suspended-load and bed-load transport of multiple grain size to simulate transport of graded sediments downstream from the Three Gorges Reservoir. The model system includes a hydrodynamic module and a sediment module. The hydrodynamic module is based on the depth-averaged shallow water equations in orthogonal curvilinear coordinates. The sediment module describing nonuniform sediment transport is developed to include nonequilibrium transport processes, bed deformation, and bed material sorting. The model was calibrated using field observations through application to a 63-km-long alluvial river channel on the middle Yangtze River in China. A total of 16 size groups and a loose layer method of three sublayers were considered for the transport of the nonuniform bed materials in a long-term simulation. Predictions are compared with preliminary results of field observations and factors affecting the reliability of the simulated results are discussed. The results may be helpful to the development of more accurate simulation models in the future.  相似文献   

9.
The objective of this study was to test the performance of a traditional gate-flushing device and a newly designed vacuum-flushing device in removing sediment from combined sewers and CSO storage tanks. A laboratory hydraulic flume was used to simulate a reach of sewer or storage tank. The flushing device was fabricated and installed at upstream end of the flume. The removed sediment was collected at downstream end of the flume and weighed. The test results indicate that the weight of flushed sediment increases with increasing initial water depth in the flushing device; the weight of flushed sediment decreases with increasing initial water depth in the flume; the weight of flushed sediment only changes slightly with changing height of flushing device opening for water release and does not necessarily increase with increasing opening height. Water is held up by vacuum and is released upon dissipation of the vacuum in the vacuum-flushing device rather than through closing and opening of a mechanical gate in the gate-flushing device. The test results indicate that sediment removal efficiency of the vacuum-flushing device is practically the same as the gate-flushing device.  相似文献   

10.
A typical flood mitigation structure on an alluvial fan consists of a dike∕channel system that deflects the flow away from the area requiring protection. Such a structure results in a change in channel slope from steep to mild when the flow first encounters the structure and from mild to steep when the flow is released at the downstream end of the structure. These slope changes result in sediment deposition at the point where the flow encounters the structure and erosion at the point of release. In designing the structure, the length and maximum depth of deposition (erosion) are critical variables that must be estimated. A simple model to estimate these variables is proposed and developed. The hypothesized model has been used to estimate the length and depth of deposition (erosion) on several projects in southern Nevada.  相似文献   

11.
A model study evaluates sediment transport in a geomorphic channel proposed for restoration and flood damage reduction of an 11-km tidally influenced reach of the Napa River located in California. The model study employs the unsteady quasi-2D hydrodynamic and sediment transport model MIKE 11, the simplified marsh plain accretion model MARSH 98, and the Rouse equation to predict annual average morphological changes of the geomorphic channel. The adopted modeling approach allows for the simulation of salient sediment transport processes in a river estuary, including lateral and vertical sorting of sediments, and local flushing of fine cohesive and noncohesive sediments during flooding. Accretion rates, particularly within the marsh plain terrace of the multistage channel, are found to be within acceptable limits for project maintenance and ecosystem restoration purposes. This enhanced 1D modeling approach may offer a viable and cost-effective alternative compared to fully 2D and 3D models, with relatively less model set-up and run-time requirements.  相似文献   

12.
A 3D numerical model, validated with data from field and laboratory measurements, is applied to simulate the flow in a 7-km-long reach of the Columbia River, upstream from Wanapum Dam, Wash. As a tool for analysis and design of alternative fish diversion schemes, the model provides mean flow patterns, turbulence levels, acceleration patterns, and other flow characteristics that are believed to be important to fish behavior. The paper describes the features of the model. Because of the pronounced three-dimensionality of the flow field and the need to capture it in the simulation, the river reach is divided into subreaches with different length scales and grid sizes. The model is applied successively to the three subreaches. An example is presented showing particle tracking through the flow field using a Monte Carlo technique.  相似文献   

13.
Optimization of water use is a complex problem in a large scale river basin. One of the most important approaches in optimizing water use in a river basin is to find the relationship between water demand and water supply. The parameters that affect demand, supply, and the methods of evaluation of such elements are discussed in this study. Also, a method is presented for providing objective and constraint functions from considering these effects. Fuzzy logic theory is used to modify the stochastic dynamic programming (SDP) method such that an optimization model is developed for allocating water and can be defined as the “stochastic fuzzy dynamic programming (SFDP)” method. This method is applied to optimize water use in the Kor and Seevand river basins, located in the Bakhtegan watershed, Fars, Iran. The primary water resources management consisted of the variability ranges of decision variables such as release from Doroodzan Dam and reservoir storage and was also used for allocating water in these river basins based on the SDP method. Therefore, in the present study, these variability ranges are obtained based on historical data, and divided into several record classes. Optimum class of release, a case of the record classes, was obtained from the optimization model for each month during the past 4 out of 25 years. Although, the SFDP method can be used in optimizing water allocation during each period, the method is structured and discussed only during the drought periods (4 years). Later, a comparison was made between optimum classes and record classes that were operated during the primary water resources management. During this period, the SFDP method reduced the difference between the release from the dam and the total water demand of the river basin. Therefore, approximately a 27% improvement in adaptation between release and demand could be attained. Finally, if the decision maker makes the decision for the release from the dam that is optimal according to our objective function, the reliability of reservoir operating can be increased by 51% during future droughts.  相似文献   

14.
Eutrophication and algal bloom has been occurring in the Three Gorges Reservoir ever since the reservoir's impoundment in 2003. The concentration of dissolved phosphorus (DP) is one of the main controlling factors for algal bloom. Fine sediment adsorbs DP thereby affecting the concentration of DP.The effect of the sediment reduction on the DP concentration of the Three Gorges Reservoir is discussed in this paper. Samples were taken from the Yangtze River and its tributaries, i.e. the Minjiang River and the Tuojiang River. The DP concentration of the water samples and the available phosphorus, total phosphorus, and phosphorus-fixing capacity of the sediment samples were analyzed. The amount of phosphorus adsorbed by the sediment was about 3% of the total DP load in the Yangtze River. An experiment was done in the lab simulating the DP concentration, sediment concentration, and turbulence.The results showed that quite a high amount of DP was adsorbed by the sediment. The adsorption capacity of the sediment was 135 mg/kg and the highest rate of adsorption was 29 mg/kg.h. The Xiluodu Dam is located at nearly 1,100 km upstream of the Three Gorges Dam. The Xiloudu Dam will trap sediment and thence reduce the sediment load entering the Three Gorges Reservoir after impoundment in 2013. It is estimated that the sediment reduction due to the Xiluodu Dam may result in an increase of the DP concentration in the Three Gorges Reservoir by 6.8%.  相似文献   

15.
This paper presents insights from a comprehensive study of river ice influences on alluvial-channel bathymetry and stability. The study entailed unique wintertime fieldwork along the Fort Peck reach of the Missouri River. The insights show how ice formation, presence, and breakup can influence channel stability in several important ways, especially when channels must convey substantial water flow during winter. Ice may hasten the migration of channel bends, cause transient scour and sediment deposition during winter, and induce cyclic shifts of flow thalweg through sinuous-braided subreaches. The insights are of direct significance for engineering activities along the Missouri’s Fort Peck reach and other alluvial channels subject to frigid winters. They also are significant for understanding the frigid-winter habitat of aquatic life in such channels.  相似文献   

16.
This case study paper presents results on the application of the HEC-6 model to the main stem of the Kankakee River in Illinois, a distance of about 39.3?km. Modeling was performed to develop comprehensive plans for enhancing the aquatic habitats and also to forecast future sedimentation problems if specific management practices are implemented. The paper concentrates on the modeling aspects of this research. The extent of the model was from the Stateline Bridge to Kankakee Dam in Kankakee. The HEC-6 model, originally developed by the Hydrologic Engineering Center (HEC) of the U.S. Army Corps of Engineers, was adapted for this application. The model was run, calibrated, and verified for both the hydraulic and sediment components. The hydraulic component was calibrated through comparison of measured yearly hydrographs with computed values for three gauging stations on the river. The hydrologic component was verified for the same three gauging stations for two yearly hydrographs for 2 additional water years. The sediment component was calibrated with river cross-sectional data collected by the Illinois State Water Survey in 1980 and 1999. The calibrated and verified hydraulic and calibrated sediment components then were used to predict future changes in water surface elevations and thalweg elevations for a 20-year period beginning in 1999, the last date for which river cross-sectional data are available.  相似文献   

17.
The Cochiti reach of the Rio Grande served as a case study to test the hypothesis that the lateral mobility of an alluvial river decreases as the river approaches equilibrium. The lateral mobility of the river was measured using a geographic information system from digitized aerial photographs of the nonvegetated active channel between 1918 and 2001. Reach-averaged lateral mobility was quantified in terms of width change, lateral migration, and total lateral movement. By 2001, the width of the Cochiti Reach was close to the expected equilibrium width indicating that the river had adjusted to the incoming water and sediment load. An exponential equation based on deviation from equilibrium width described 95–96% of the variance in channel width, 78–90% of variance in migration rates, and 92% of the variance in total lateral movement between 1918 and 1992. For validation of the model, the 2001 width and migration rates were predicted with errors as low as 19 and 8%, respectively. The exponential width model was also applied to four other rivers that exhibited narrowing trends following dam construction and explained 82–89% of the variance in width change on those rivers.  相似文献   

18.
1923 Gleno Dam Break: Case Study and Numerical Modeling   总被引:2,自引:0,他引:2  
On the morning of December 1, 1923, the Gleno Dam (located in the Central Italian Alps) suddenly collapsed a few days after the first complete reservoir filling. Nearly 4.5×106??m3 of water was released. The consequent inundation caused significant destruction along the downstream valley and a death toll of at least 356 lives. This failure is the only historical case of dam break caused by structural deficiencies that has occurred in Italy. As a result, it has deeply influenced the evolution of Italian regulations regarding dam design and hydraulic risk evaluation. However, in spite of its relevance, this event has never been characterized from a hydraulic standpoint. This paper reports the main information obtained from the analysis of a vast amount of historical documents regarding the Gleno Dam break to set up a case study useful for validating dam-break models in mountain settings. Moreover, it presents the main results of one-dimensional (1D) modeling of the dam break wave propagation accomplished with a first-order finite volume numerical scheme recently proposed in the literature for field applications. The overall effectiveness and reliability of the model are evaluated for this case characterized by very irregular topography. Finally, the practical relevance of several choices that the numerical reconstruction of this kind of event demands is tested.  相似文献   

19.
In recent years, design floods have increased beyond spillway capacity at numerous large dams. When additional spillway capacity is difficult or expensive to develop, designers may consider allowing the overtopping of a dam during extreme events. For concrete arch dams, this often raises issues of potential erosion and scour downstream from the dam, where the free jet initiating at the dam crest impacts the abutments and the downstream river channel. A recent review has shown that a commonly cited equation for predicting the trajectory of free jets is flawed, producing jet trajectories that are much too flat in this application. This could lead analysts to underestimate the amount of scour that could occur near a dam foundation, or conversely to overestimate the extent of scour protection required. This technical note presents the correct and incorrect jet trajectory equations, quantifies the errors associated with the flawed equation, and summarizes practical information needed to model the trajectory of free jets overtopping dam crests.  相似文献   

20.
Kootenai River white sturgeon spawn in an 18-km reach of the Kootenai River, Id. Since completion of Libby Dam upstream from the spawning reach in 1972, 1974 is the only year with documented significant recruitment of juvenile fish. Where successful in other rivers, white sturgeon spawn over clean coarse material of gravel size or larger. The channel substrate in the current (2008) 18-km spawning reach is composed primarily of sand and some buried gravel; within a few kilometers upstream there is an extended reach of clean gravel, cobble, and bedrock. We used a quasi-three-dimensional flow and sediment-transport model along with the locations of collected sturgeon eggs as a proxy for spawning location from 1994 to 2002 to gain insight into spawning-habitat selection in a reach which is currently unsuitable due to the lack of coarse substrate. Spatial correlations between spawning locations and simulated velocity and depth indicate fish select regions of higher velocity and greater depth within any river cross section to spawn. These regions of high velocity and depth occur in the same locations regardless of the discharge magnitude as modeled over a range of pre- and postdam flow conditions. A flow and sediment-transport simulation shows high discharge, and relatively long-duration flow associated with predam flow events is sufficient to scour the fine sediment overburden, periodically exposing existing lenses of gravel and cobble as lag deposits in the current spawning reach. This is corroborated by video observations of bed surface material following a significant flood event in 2006, which show gravel and cobble present in many locations in the current spawning reach. Thus, both modeling and observations suggest that the relative rarity of extremely high flows in the current regulated flow regime is at least partly responsible for the lack of successful spawning; in the predam flow regime, frequent high flows removed the fine sediment overburden, unveiling coarse material and providing suitable substrate in the current spawning reach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号