首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The utilization of palm olein in the production of zero‐trans Iranian vanaspati through enzymatic interesterification was studied. Vanaspati fat was made from ternary blends of palm olein (POL), low‐erucic acid rapeseed oil (RSO) and sunflower oil (SFO) through direct interesterification of the blends or by blending interesterified POL with RSO and SFO. The slip melting point (SMP), the solid fat content (SFC) at 10–40 °C, the carbon number (CN) triacylglycerol (TAG) composition, the induction period (IP) of oxidation at 120 °C (IP120) and the IP of crystallization at 20 °C of the final products and non‐interesterified blends were evaluated. Results indicated that all the final products had higher SMP, SFC, IP of crystallization and CN 48 TAG (trisaturated TAG), and lower IP120, than their non‐interesterified blends. However, SMP, SFC, IP120, IP of crystallization and CN 48 TAG were higher for fats prepared by blending interesterified POL with RSO and SFO. A comparison between the SFC at 20–30 °C of the final products and those of a commercial low‐trans Iranian vanaspati showed that the least saturated fatty acid content necessary to achieve a zero‐trans fat suitable for use as Iranian vanaspati was 37.2% for directly interesterified blends and 28.8% for fats prepared by blending interesterified POL with liquid oils.  相似文献   

2.
Hash browns (HB) were fried (Teflon-coated pan, ∼180°C) with low-linolenic acid (LL-SBO) and creamy partially hydrogenated soybean oils (PH-SBO). High-performance size-exclusion chromatography of the oil extracted before heating indicated a relatively low polymer content (LL-SBO, 3.8%; PH-SBO, 1.6%), although the oil remaining in the pan after frying had a much greater polymer content (38.8%, LL-SBO; 17.5%, PH-SBO). The percentage of altered TAG in the LL-SBO sample (extracted from HB) was 34.4% after frying, whereas the PH-SBO had 33.2% altered TAG (as determined by supercritical fluid chromatography). In the LL-SBO pan-fried HB samples (not the extracted oil), 2-pentanone, hexanal, 2-hexenal, trans-2-heptenal, 2-pentylfuran, and trans-2-octenal were found, whereas the major volatile compounds in the HB fried with PH-SBO included hexanal, trans-2-hexenal, and trans-2-heptenal. Hexanal was the most abundant volatile compound in both HB samples (LL-SBO, 2.7 ppm; PH-SBO, 0.3 ppm). There were significant differences in the polymer content, hexanal content, p-anisidine values, and Foodoil sensor readings between LL-SBO and PH-SBO (P<0.05). The PH-SBO sample was more stable than the LL-SBO sample. Moreover, the LL-SBO oil sample in the pan after frying had the greater increase in polymer content.  相似文献   

3.
The solid fat content (SFC), Avrami index (n), crystallization rate (z), fractal dimension (D), and the pre-exponential term [log(γ)] were determined in blends of cocoa butter (CB) with canola oil or soybean oil crystallized at temperatures (T Cr) between 9.5 and 13.5°C. The relationship of these parameters with the elasticity (G′) and yield stress (σ*) values of the crystallized blends was investigated, considering the equilibrium melting temperature (T M o) and the supercooling (i.e., T Cr oT M o) present in the blends. In general, supercooling was higher in the CB/soybean oil blend [T M o=65.8°C (±3.0°C)] than in the CB/canola oil blend [T M o=33.7°C (±4.9°C)]. Therefore, under similar T Cr values, higher SFC and z values (P<0.05) were obtained with the CB/soybean oil blend. However, independent of T Cr TAG followed a spherulitic crystal growth mechanism in both blends. Supercooling calculated with melting temperatures from DSC thermograms explained the SFC and z behavior just within each blend. However, supercooling calculated with T M o explained both the SFC and z behavior within each blend and between the blends. Thus, independent of the blend used, SFC described the behavior of Geq and σ* and pointed out the presence of two supercooling regions. In the lower supercooling region, Geq and σ* decreased as SFC increased between 20 and 23%. In this region, the crystal network structures were formed by a mixture of small β′ crystals and large β crystals. In contrast, in the higher supercooling region (24 to 27% SFC), Geq and σ* had a direct relationship with SFC, and the crystal network structure was formed mainly by small β′ crystals. However, we could not find a particular relationship that described the overall behavior of Geq and σ* as a function of D and independent of the system investigated.  相似文献   

4.
Modification of the characteristics of palm oil (PO), sunflower oil, and plam kernel olein (PKOo) according to conventional three-component mixture designs was undertaken by a combination of blending and chemical interesterification (CIE) techniques. TAG composition and solid fat content (SFC) profile of the starting blends were analyzed and compared with those of the interesterified blends. Upon CIE, extensive rearrangement of FA among TAG was evident. Concentrations of several TAG were increased, some were decreased, and several new TAG were formed. The resulting changes in TAG profile were reflected in the SFC of the blends. The SFC values of the chemically interesterified blends, except binary blends of PO/PKOo, revealed that they were softer than their respective starting blends. SFC data also indicated that eutectic interaction occurred between PO and PKOo in the starting blends and that this interaction was diminished after CIE.  相似文献   

5.
Rice bran oil structured lipid (RBOSL) was produced from rice bran oil (RBO) and the medium chain fatty acid (MCFA), caprylic acid, with Lipozyme RM IM as biocatalyst. RBOSL and RBO were mixed with palm stearin (PS) in ratios of 30:70, 40:60, 50:50, 60:40 and 70:30 v/v (RBOSL to PS) to formulate trans-free shortenings. Fatty acid profiles, solid fat content (SFC), melting and crystallization curves and crystal morphology were determined. The content of caprylic acid in shortening blends with RBOSL ranged from 9.92 to 22.14 mol%. Shortening blends containing 30:70 and 60:40 RBOSL or RBO and PS had fatty acid profiles similar to a commercial shortening (CS). SFCs for blends were within the desired range for CS of 10–50% at 10–40 °C. Shortening blends containing higher amounts of RBOSL or RBO had melting and crystallization curves similar to CS. All shortening blends contained primarily β′ crystals. RBOSL blended with PS was comparable to RBO in producing shortenings with fatty acid profiles, SFC, melting and crystallization profiles and crystal morphologies that were similar. RBOSL blended with PS can possibly provide healthier alternative to some oils currently blended with PS and commercial shortening to produce trans-free shortening because of the health benefits of the MCFA in RBOSL.  相似文献   

6.
Palm stearin (POs) with an iodine value of 41.4, sunflower oil (SFO) and palm kernel olein (PKOo) were blended in various ratios according to a three‐component mixture design and subjected to chemical interesterification (CIE). Triacylglycerol (TAG) and solid fat content (SFC) profiles of the chemically interesterified (CIEed) blends were analyzed and compared with those of the corresponding non‐CIEed blends. Upon CIE, extensive rearrangement of fatty acids (FA) among TAG was evident. The concentrations of several TAG were increased, some decreased and several new TAG might also have been formed. The changes in the TAG profiles were reflected in the SFC profiles of the blends. The SFC of the CIEed blends, except the binary blends of POs/PKOo which experienced an increase in SFC following CIE, revealed that they were softer than their respective starting blends. Randomization of FA distribution within and among TAG molecules of POs and PKOo led to a modification in TAG composition of the POs/PKOo blends and improved miscibility between the two fats, and consequently diminished the eutectic interaction that occurred between POs and PKOo.  相似文献   

7.
Speciality plastic fats with no trans fatty acids suitable for use in bakery and as vanaspati are prepared by interesterification of blends of palm hard fraction (PSt) with mahua and mango fats at various proportions. It was found that the interesterified samples did not show significant differences in solid fat content (SFC) after 0.5 or 1 h reaction time. The blends containing PSt/mahua (1:1) showed three distinct endotherms, indicating a heterogeneity of triacylglycerols (TG), the proportions of which altered after interesterification. The SFC also showed improved plasticity after interesterification. Similar results were observed with other blends of PSt/mahua (1:2). These changes in melting behavior are due to alterations in TG composition, as the trisaturated‐type TG were reduced and the low‐melting TG increased after interesterification. The blends containing PSt/mango (1:1) showed improvement in plasticity after interesterification, whereas those containing PSt/mango (2:1) were hard and showed high solid contents at higher temperature and hence may not be suitable for bakery or as vanaspati. The blends with palm and mahua oils were softer and may be suitable for margarine‐type products. The results showed that the blends of PSt/mahua (1:1, 1:2) and PSt/mango (1:1) after interesterification for 1 h at 80 °C showed an SFC similar to those of commercial hydrogenated bakery shortenings and vanaspati. Hence, they could be used in these applications in place of hydrogenated fats as they are free from trans acids, which are reported to be risk factors involved in coronary heart disease. For softer consistency like margarine applications, the blends containing palm oil and mahua oil are suitable.  相似文献   

8.
The quality of shortenings, such as solid fat content (SFC) and texture, strongly depends on temperature fluctuations during storage and handling. The quality of a shortening might be affected not only by temperature fluctuations but also by its chemical composition and the presence of emulsifiers. The objective of this work was to investigate the effect of emulsifier addition and storage conditions on the texture, thermal behavior and SFC of low‐trans shortenings formulated with palm oil, palm kernel oil, and vegetable oils such as sunflower and soybean oils. Several conclusions can be drawn from this study: (a) The crystallization behavior of fat blends strongly depends on the type of emulsifier used and the chemical composition of the sample; (b) the addition of emulsifiers affects not only the type of crystals formed (fractionation) but also the amount of crystals obtained (enthalpy, SFC), inducing or delaying the crystallization process; (c) emulsifiers affect the texture of the crystalline structure formed by making it softer; (d) the storage conditions affect both the texture and the SFC of the materials. This study shows that samples that are highly super‐cooled during storage become harder while samples that are less super‐cooled become softer with storage conditions.  相似文献   

9.
Cake shortening is an important ingredient that imparts taste and texture in the cake as the final product. Hydrogenated shortenings contain high amounts of trans fatty acids, which is considered a risk factor for obesity, cancers, and cardiovascular diseases. In this research, chemically interesterified blends of canola oil (CO) and palm stearin (PS) were recruited in order to formulate zero‐trans shortening, specifically for cake application. The optimization of shortening formulation was performed by Design‐Expert software, considering melting, congelation, textural, and rheological properties of cake shortening as responses. The formulated shortening in the weight ratio of 66.41:33.58 (PS:CO) (%, w/w) was analyzed and compared with two commercial cake shortenings in terms of fatty acid and triacylglycerol composition, slip melting point (SMP), solid fat content (SFC), and rheological and textural properties. The results showed that the formulated zero‐trans cake shortening with 0.2% trans, 47.2% saturated fatty acids, SMP of 40.9 °C, SFC of 10.51% at 37 °C, firmness of 1522.5 g, and linear viscoelastic range of 0.035% had the most acceptable criteria among cake‐shortening samples. The findings of this study offer insights into the relationship between shortening functionality and physicochemical properties and serve as a base for future studies on zero‐trans shortenings formulation.  相似文献   

10.
The effects of blending palm oil (PO) with soybean oil (SBO) and lard with canola oil, and subsequent chemical interesterification (CIE), on their melting and crystallization behavior were investigated. Lard underwent larger CIE-induced changes in triacylglycerol (TAG) composition than palm oil. Within 30 min to 1 h of CIE, changes in TAG profile appeared complete for both lard and PO. PO had a solid fat content (SFC) of ∼68% at 0°C, which diminished by ∼30% between 10 and 20°C. Dilution with SBO gradually lowered the initial SFC. CIE linearized the melting profile of all palm oil-soybean oil (POSBO) blends between 5 and 40°C. Lard SFC followed an entirely different trend. The melting behavior of lard and lard-canola oil (LCO) blends in the 0–40°C range was linear. CIE led to more abrupt melting for all LCO blends. Both systems displayed monotectic behavior. CIE increased the DP of POSBO blends with ≥80% PO in the blend and lowered that of blends with ≤70% PO. All CIE LCO blends had a slightly lower DP vis-à-vis their noninteresterified counterparts.  相似文献   

11.
The feasibility to discriminate among samples of different fat blends prior and after inorganic or lipase‐catalyzed interesterification, via pattern recognition techniques [principal component analysis (PCA) and discriminant analysis (DA)], was investigated. Blends I and II, consisting of mixtures of palm stearin, palm kernel oil and a concentrate of triacylglycerols (TAG) rich in n‐3 polyunsaturated fatty acids (EPAX 4510TG or EPAX 2050TG) were used. These blends, prior (64 samples) and after interesterification, catalyzed by an immobilized Thermomyces lanuginosa lipase (Lipozyme TL IM, 54 samples) or by sodium methoxide (10 samples), were characterized by their acylglycerol profiles (25 chromatographic peaks) and solid fat content (SFC) at 10, 20, 30 and 35 °C. PCA on the multivariate data (i) showed that the initial samples were characterized by higher SFC and higher contents of high‐melting TAG and (ii) suggested two separate clusters of initial and interesterified samples. DA was performed on the multivariate data to determine which of the 29 variables have discriminative power. When the 124 samples, characterized by their acylglycerols, were grouped into (i) initial and interesterified samples of blends I or II (four groups) or (ii) also by the catalyst used (six groups), 98.4% of the samples were correctly classified.  相似文献   

12.
Blends of high-oleic sunflower oil and fully hydrogenated canola oil were subjected to enzymatic and chemical interesterification using Candida antarctica lipase (5%) and sodium methoxide (0.3%), respectively. The effect of each interesterification process was determined by comparing the triacylglycerol (TAG) composition, solid fat content (SFC) profiles and thermal properties of the blends before and after interesterification. Interesterification resulted in a decrease in the concentration of triunsaturated and trisaturated TAG and an increase in the proportion of mono- and disaturated TAG. These alterations in TAG composition and the presence of a greater variety of TAG species upon interesterification was correlated with a broader melting transition by differential scanning calorimetry and, ultimately, a lower melting point for the interesterified blends. Much broader ranges in plasticity were observed for the interesterified blends (chemically and enzymatically) compared to the physical blends. Even though ideal solubility of stearin in oil was observed, the value predicted by the Hildebrand model was higher than the actual amount. Crystallization kinetic parameters (Avrami index and rate constant) were similar for the non-interesterified, enzymatically interesterified and chemically interesterified blends when compared as a function of SFC. Results from this work will aid in the formulation of more healthy fat and oil products and address a critical industrial demand in terms of formulation options for spreads, margarines and shortenings.  相似文献   

13.
Structured lipids (SL) were produced from enzymatic interesterification (EIE) of palm kernel stearin (PKS), coconut oil (CNO), and fully hydrogenated palm stearin (FHPS) blends in various mass ratios. The EIE reactions were performed at 60 °C for 6 hours using immobilized Lipozyme RM IM with a mixing speed of 300 rpm. The physicochemical properties, crystallization and melting behavior, solid fat content (SFC), crystal morphology and polymorphism of the physical blends (PB), and the SL were characterized and compared with commercial cocoa butter and cocoa butter alternatives (CBA). EIE significantly modified the triacylglycerol compositions of the fat blends, resulting in changes in the physical properties and the crystallization and melting behavior. SFC and slip melting point of all SL decreased from those of their counterpart PB. In particular, SL obtained from EIE of blends 60:10:30 and 70:10:20 (PKS:CNO:FHPS) exhibited a high potential to be used as trans-free CBA as they showed similar melting ranges, melting peak temperatures, and SFC curves to the commercial CBA with fine needle-like crystals and desirable β' polymorph.  相似文献   

14.
Lipozyme TL IM-catalyzed interesterification for the modification of margarine fats was carried out in a batch reactor at 70°C with a lipase dosage of 4%. Solid fat content (SFC) was used to monitor the reaction progress. Lipase-catalyzed interesterification, which led to changes in the SFC, was assumed to be a first-order reversible reaction. Accordingly, the change in SFC vs. reaction time was described by an exponential model. The model contained three parameters, each with a particular physical or chemical meaning: (i) the initial SFC (SFC0), (ii) the change in SFC (ΔSFC) from the initial to the equilibrium state, and (iii) the reaction rate constant value (k). SFCo and ΔSFC were related to only the types of blends and the blend ratios. The rate constant k was related to lipase activity on a given oil blend. Evaluation of the model was carried out with two groups of oil blends, i.e., palm stearin/coconut oil in weight ratios of 90∶10, 80∶20, and 70∶30, and soybean oil/fully hydrogenated soybean oil in weight ratios of 80∶20, 65∶35, and 50∶50. Correlation coefficients higher than 0.99 between the experimental and predicted values were observed for SFC at temperatures above 30°C. The model is useful for predicting changes in the SFC during lipase-catalyzed interesterification with a selected group of oil blends. It also can be used to control the process when particular SFC values are targeted.  相似文献   

15.
“Isomeric fatty acids” is a term that refers to the trans- and positional isomers formed during hydrogenation of naturally occurring oils. The purposes of this paper are as follows: (i) to summarize potential exposure of infants to isomeric fatty acids by reviewing estimates of isomeric fatty acids in the maternal diet, in human milk, and in infant formula/infant foods, and (ii) to evaluate the evidence for adverse effects of isomeric fatty acids on infant development with respect to growth and essential fatty acid status. Estimates of the intake of trans-fatty acids vary widely both within and across populations. Current estimates of trans-fatty acids in the North American population are 4–11% of total fatty acids or 3–13 g/(person·d), whereas in Mediterranean countries in which olive oil is the primary fat and in Far Eastern countries in which little commercially hydrogenated fat is consumed, per capita consumption of trans-fatty acids is <1–2 g/d. The trans-fatty acid content of human milk reflects the cross-cultural variation in the maternal diet, with trans-fatty acids in human milk samples ranging from 6 to 7% in North America to <0.5% in Hong Kong. Trans-fatty acids are transferred from the maternal diet through the placenta to the developing fetus or through milk to the breast-fed infant. In some studies, plasma trans-fatty acids are inversely related to birth weight and head circumference. The hypothesis that dietary trans-fatty acids could inhibit biosynthesis of long-chain polyunsaturated fatty acids with 20 and 22 carbon atoms and thus affect infant development is supported by studies demonstrating an inverse correlation of plasma trans-fatty acids with n−3 and n−6 long-chain polyunsaturated fatty acids in infants. However, no such relationship has been observed in human milk. A definitive answer concerning a potentially adverse effect of dietary trans-fatty acids on infant development awaits future studies.  相似文献   

16.
The behavior of the Avrami plot during TAG crystallization was studied by DSC and rheological measurements in oil blends of palm stearin (26 and 80%) in sesame oil, using different crystallization temperatures (T Cr o) attained under several cooling rate conditions (1, 10, and 30°C/min). In the same way, the relationship between the growth mechanisms of TAG, measured by the Avrami index (n), and the mass fractal dimension (D) of the crystal network was investigated. This last parameter was measured as TAG crystallized in the oil blend under isothermal conditions. Results showed that TAG crystallization in a vegetable oil involves the process of TAG lamellar development, nucleation, and crystal growth. Each event occurred at a different rate and extent as affected by cooling rate and T Cr o, and as a function of crystallization time under isothemal conditions at a given cooling rate. Within this framework, we proposed that n calculated from the second region of the Avrami plot is a parameter mainly associated with crystal growth, whereas n from the first region is associated more with nucleation. On the other hand, changes in D values followed the different polymorphic states developed by TAG as a function of T Cr o. Additionally, it was shown that, independent of the concentration of palm stearin in the oil blend, at cooling rates of 1 and 10°C/min the increase in n from ∼3 to ∼4 produced a curvilinear increase in D from ∼1.75 to ∼3.0. The growth mechanism of the TAG crystals (i.e., n), also affected the magnitude of D. However different behavior was observed in the n-D relationship when n<2.7 and at 30°C/min.  相似文献   

17.
A blend of palm stearin and soybean oil (70/30, wt%) was modified by chemical interesterification (CIE) and enzymatic interesterification (EIE), the latter batch-wise (B-EIE) and in continuous (C-EIE). Better oil quality, mainly in terms of acidity, free tocopherol and partial acylglycerol content, was obtained after EIE. The clear melting point after any interesterification process was similar and about 9 °C lower as result of the modification in the TAG profile, which approaches the calculated random distribution. Interesterification changed the SFC profile significantly. For the fully refined interesterified blends, the SFC profile was similar and clearly different from the starting blend. Interesterification decreased the content of solids at temperatures >15 °C and increased the content of solids at temperatures <15 °C. This increase was less remarkable after C-EIE, suggesting that full randomization was not achieved in the used conditions, probably caused by a too short residence time of the oil in the enzymatic bed. During B-EIE, variations in SFC with time, principally at low temperatures, were still observed although the TAG composition was stable. At low temperatures, the reaction rate calculated from SFC was very low, confirming an important effect of the acyl migration on this parameter.  相似文献   

18.
Binary blends of canola oil (CO) and palm olein (POo) or fully hydrogenated soybean oil (FHSBO) were interesterified using commercial lipase, Lypozyme TL IM, or sodium methoxide. Free fatty acids (FFA) and soap content increased and peroxide value (PV) decreased after enzymatic or chemical interesterification. No difference was observed between the PV of enzymatically and chemically interesterified blends. Enzymatically interesterified fats contained higher FFA and lower soap content than chemically prepared fats. Slip melting point (SMP) and solid‐fat content (SFC) of CO and POo blends increased, whereas those of CO and FHSBO blends decreased after chemical or enzymatic interesterification. Enzymatically interesterified CO and POo blends had lower SMP and SFC (at some temperatures) than chemically interesterified blends. The status was reverse when comparing chemically and enzymatically interesterified CO and FHSBO blends. The induction period for oxidation at 120°C of blends decreased after interesterification. However, chemically interesterified blends were more oxidatively stable than enzymatically interesterified blends. Interesterified blends of CO and POo or FHSBO displayed characteristics suited to application as trans‐free soft tub, stick, roll‐in and baker's margarine, cake shortening and vanaspati fat.  相似文献   

19.
Four polystyrene–polyurethane mechanical blends were prepared with 5, 10, 20, and 40% thermoplastic polyurethane, respectively. Their impact properties were compared with pure polystyrene and commerical types of impact polystyrene. The rheological properties of the blends were studied with DSC and dynamic mechanical spectroscopy. It was found that addition of softer polyurethane conglomerates embedded inside the polystyrene matrix, although increasing the toughness of the blend as expected from addition of the softer particulate, also increased the glassy region of the blends by shifting their Tgs to higher temperatures. A theory based on the interaction of phases was propounded explaining this phenomenon.  相似文献   

20.
Linseed (Linum usitatissimum, L.) and camelina (Camelina sativa, L.) are ancient crops containing seed oils with a high potential for nutritional, medicinal, pharmaceutical and technical applications. In the present study, linseed and camelina oils of plant varieties grown under Central European climate conditions were examined with respect to their volatile and triacylglycerol (TAG) components. Solid‐phase microextraction was applied to the study of volatile compounds of several linseed and camelina oils, which have not been described prior to this publication. Hexanol (6.5–20.3% related to the total level of volatiles), trans‐2‐butenal (1.3–5.0%) and acetic acid (3.6–3.8%) could be identified as the main volatile compounds in the linseed oil samples. Trans‐2‐butenal (9.8%) and acetic acid (9.3%), accompanied by trans,trans‐3,5‐octadiene‐2‐one (3.8%) and trans,trans‐2,4‐heptadienal (3.6%), dominated the headspace of the examined camelina oil samples. TAG were analysed by MALDI‐RTOF‐MS and ESI‐IT‐MS, providing information about the total TAG composition of the oils as well as the fatty acid composition of the individual components. More than 20 TAG could be identified directly from whole linseed oil samples, mainly composed of linolenic (18:3), linoleic (18:2) and oleic (18:1) acid, and to a lesser degree of stearic (18:0) and palmitic (16:0) acid. While in linseed these TAG comprise more than 60% of the oils, Camelina sativa exhibited a wider range of more than 50 constituents, with a considerable amount (>35%) of TAG containing gadoleic (20:1) and eicosadienoic (20:2) acid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号