首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 212 毫秒
1.
该文研究接枝化和羧甲基化对小米糠膳食纤维的化学组成、微观结构和理化性质的影响。结果表明,接枝化和羧甲基化改性可以提高小米糠膳食纤维的可溶性膳食纤维含量、比表面积、持水力、持油力、阳离子交换能力和膨胀力。羧甲基化和接枝化改性后,小米糠膳食纤维的可溶性膳食纤维含量分别提高约7倍和11倍;持水力从1.12 g/g分别增加到2.69、2.29 g/g;持油力则从2.19 g/g分别提升至4.59、4.27 g/g。同时,接枝化和羧甲基化后,小米糠膳食纤维的阳离子交换能力分别提高5.34倍和0.75倍。此外,与未改性的小米糠膳食纤维相比,改性后的小米糠膳食纤维的色泽变深、粒度变小、比表面积增大,呈蜂窝状、多孔状的微观结构。  相似文献   

2.
李娜  宁正祥  祝子坪  李琳 《食品科学》2009,30(20):251-254
采用烘干、粉碎、酶解、脱色工艺流程加工豆渣,制备大豆膳食纤维,得膳食纤维纯度为87.5%。对豆渣膳食纤维的性能进行研究,豆渣膳食纤维持水力为12.3ml/g、溶胀性为14.3ml/g、结合水力为7.8g/g,比豆渣原料分别提高了84%、100%和39%。pH7条件下豆渣膳食纤维对胆固醇吸附量为8.51mg/g,pH2条件下吸附量为4.16mg/g,分别比豆渣原料提高了145%和85.7%。1、2、3、4g豆渣膳食纤维对含0.2g胆酸钠的0.15mol/L NaCl溶液中的胆酸钠吸附率分别为14%、23%、33%、58%。豆渣膳食纤维的乳化能力、阳离子交换能力、脂肪结合能力、亚硝酸根离子吸附能力比豆渣原料有所降低。  相似文献   

3.
以豆渣为原料,分别采用化学法和湿热法对豆渣膳食纤维的脱脂工艺和脱腥工艺进行优化,分析豆渣膳食纤维的理化性质,并将豆渣膳食纤维应用于香肠中。结果表明,豆渣膳食纤维的脱脂工艺为:料液比1∶15(g/mL),NaOH浓度5%,温度80℃,时间60min,该条件下豆渣膳食纤维的脱脂率为92.91%;豆渣膳食纤维的脱腥工艺为:料液比1∶5(g/mL),时间4h,温度50℃,pH 4.0,该条件下豆渣膳食纤维的脱腥率为69.66%。豆渣膳食纤维的膨胀力、持水力、结合水力和持油力分别为3.49mL/g、1.14g/g、3.90g/g和0.91g/g,将豆渣膳食纤维添加到香肠中能够改善香肠的弹性和硬度。  相似文献   

4.
本文对豆渣膳食纤维的制备工艺进行了研究。利用生物酶法改性提高豆渣中可溶性膳食纤维(SDF)含量,通过单因素实验和正交实验确定了纤维素酶酶解的最佳工艺。最佳工艺条件为:纤维素酶添加量0.5%,料液比1∶12,温度45℃,pH值4.5,酶解时间1.5h,乙醇沉淀时间1h,在此条件下,豆渣SDF得率可达到8.53%。在此基础上,制得了豆渣膳食纤维粉,其持水力和膨胀性分别为5.0783g/g和8.4675mL/g,色泽呈乳白色,具有豆渣膳食纤维固有的气味和滋味,质量指标达到国家二级标准。  相似文献   

5.
为实现大豆资源的充分高效利用,以制作豆腐、豆浆后下脚料豆渣为原料,应用动态超高压微射流作用、离心分离技术和喷雾干燥技术制备大豆可溶性膳食纤维;测定了可溶性膳食纤维的持水力、膨胀率和溶解性;并研究以酶-碱结合法提取大豆可溶性纤维,以碱浓度、酶用量、碱提温度和酶解时间为四因素,通过正交实验得出最佳工艺条件为:碱浓度0.6%,碱提温度65℃,酶解时间55min,酶用量22万U时,酶-碱结合法制备的大豆可溶性膳食纤维含量(SDF/TDF)可达到21.35%。经140MPa微射流均质机处理,其SDF/TDF含量可提高到37.42%,其持水力、膨胀率和溶解度分别为10.697g/g、830%和22.38g/100mL。   相似文献   

6.
研究酶法处理前后苦荞麸皮膳食纤维的持水力、膨胀率、黏度,并对纤维的微观结构变化进行观察.结果表明:酶法处理后苦荞麸皮膳食纤维的持水力由原来的2.216g/g提高至2.383g/g,膨胀率由原来的2.333mL/g增加至4.667mL/g;经纤维素酶改性,苦养麸皮水溶性膳食纤维含量由0.62%提高至18.03%,其中质量...  相似文献   

7.
该研究通过傅里叶变换红外光谱、X-衍射、扫描电镜等分析方法分析水力空化、酶解处理对脱脂豆渣纤维结构和理化性质的影响。研究结果表明:空化处理强烈影响了豆渣纤维的理化性质,空化10 min时豆渣纤维的持水力与持油力分别达到18.43 g/g和7.35 g/g,空化处理20 min使可溶性膳食纤维含量(Soluble Dietary Fiber,SDF)由2.87%升至6.97%,溶液表观黏度降低,豆渣纤维出现蜂窝状片状结构,豆渣纤维结晶度降低。酶辅助空化处理可以进一步改善豆渣纤维的理化性质,且受酶解先后顺序强烈影响,其中,先酶解后空化豆渣中的SDF含量可达12.52%,溶液表观黏度明显降低,先空化后酶解的样品则表现出更高的持水力与持油力。酶辅助空化处理豆渣出现较多碎片结构,纤维尺寸变小。酶辅助空化处理可以作为一种有效改善豆渣纤维结构和理化性质的手段。  相似文献   

8.
研究了脱色剂用量、脱色时间、脱色温度、pH值等因素对豆渣膳食纤维脱色效果的影响,得出其影响的主次顺序是:脱色剂用量〉pH值〉脱色温度〉脱色时间〉料水比。并确定了豆渣膳食纤维脱色的最适条件为:料水比为1:5,脱色荆用量为3mol/100g干豆渣,pH值为10,脱色温度为80℃,脱色时间3.5h。经过此方法脱色的豆渣膳食纤维的白度值达到88以上,并显著改善了豆渣膳食纤维的质量,使其持水力提高了1.7倍,溶胀性提高了1.9倍。  相似文献   

9.
超声波辅助复合酶(1.0%碱性蛋白酶和0.2%耐高温α-淀粉酶)酶解脱脂后的奶白花芸豆豆渣,提取其中的膳食纤维。研究了超声条件对水不溶性膳食纤维(IDF)和水溶性膳食纤维(SDF)提取率的影响,优化了提取工艺条件,并研究了芸豆渣膳食纤维的结构及理化性质。试验结果表明:超声时间25 min、功率250 W、温度60℃时,IDF提取率达到60.11%,SDF提取率为5.63%;两种膳食纤维的红外光谱中有特征吸收峰;SDF持水力比IDF高出1.828g/g,持油力高出0.69g/g。  相似文献   

10.
挤压蒸煮对豆渣中可溶性膳食纤维含量的影响   总被引:5,自引:2,他引:3  
采用挤压蒸煮技术提高豆渣中可溶性膳食纤维的含量.通过单因素和正交试验,研究不同挤压条件对豆渣中可溶性膳食纤维含量的影响.结果表明:在物料水分20%、螺杆转数175 r/min、挤压温度160℃条件下处理的豆渣,其可溶性膳食纤维含量从2.79%提高到14.53%,不溶性膳食纤维的含量从60.15%下降到48.53%,且不溶性膳食纤维的减少量和可溶性膳食纤维的增加量基本一致,总膳食纤维的含量基本没有发生变化,同时豆渣膳食纤维的持水力从5.56 g/g上升到9.71 g/g,膨胀力从6.33 mL/g上升到9.58 mL/g.豆渣经上述挤压条件处理,其可溶性膳食纤维含量得到显著提高,物化特性得到明显改善,生理功能特性得到增强.  相似文献   

11.
本研究将乙醇脱色法和中性洗涤法结合提取柑橘皮中的非水溶性膳食纤维,其最佳提取工艺为:料水比1:30,提取温度70℃,提取时间90min。结果表明:持水性、膨胀性随温度增加而增加,随着氯化钠溶液、葡萄糖溶液浓度的增加而降低。在中性条件下有一定的持水力和膨胀性;偏酸或偏碱条件能促进其持水性和膨胀性的增加,但在过酸或过碱条件下,其持水性和膨胀性均呈现下降趋势。  相似文献   

12.
采用超声波-微波协同法提取沙棘果皮渣中可溶性膳食纤维的工艺条件。通过单因素实验研究柠檬酸质量分数、料液比、微波功率、提取时间对沙棘果皮渣中可溶性膳食纤维提取得率的影响,进一步用Box-Behnken法优化沙棘果皮渣中可溶性膳食纤维最佳提取工艺。结果表明,在柠檬酸质量分数为3%,料液比1:16 g/mL,微波功率620 W,提取时间60 min的条件下,沙棘果皮渣中可溶性膳食纤维提取效果最佳,提取得率为11.07%±0.26%,与模型预测值10.83%误差为2.22%。制备的沙棘果皮渣可溶性膳食纤维持水力为8.02 g/g,持油力为4.19 g/g,膨胀力为3.82 mL/g。超声波-微波协同法是一种提取沙棘果皮渣中可溶性膳食纤维的有效方法。  相似文献   

13.
响应面法研究脱脂豆粕渣膳食纤维提取工艺   总被引:3,自引:1,他引:2  
以脱脂豆粕渣为原料,利用响应面法研究了碱浓度、提取温度、提取时间以及料液比对脱脂豆粕渣膳食纤维提取率的影响。结果表明,回归模型能很好地反映各因素水平与响应值之间的关系,同时得出最佳的提取条件为:提取温度62℃,提取时间60min,料液比为1∶8,碱浓度0.68%。此时膳食纤维提取率为59.48%,持水力为5.3767g/g,溶胀性为6.35mL/g。  相似文献   

14.
以水芹为试材,采用酶和化学结合法提取其膳食纤维,在单因素实验基础上,利用正交实验优化水芹膳食纤维提取工艺,最后对水芹膳食纤维持水力和膨胀力进行评价。结果表明,最佳酶解工艺条件为酶底比40∶1 U/g、酶解温度50℃、酶解时间1.5 h,最佳碱解工艺条件为液料比30∶1(m L/g)、碳酸钠浓度2.5%、碱解温度30℃、碱解时间1 h,在此条件下水芹总膳食纤维(TDF)提取率为47.94%,其中水溶性膳食纤维(SDF)为4.78%,不溶性膳食纤维为43.16%,同时发现水芹叶中膳食纤维含量高于茎秆,且SDF比例较高。水芹TDF的膨胀力和持水力分别达到6.27 m L/g和389%,且水芹叶TDF的膨胀力和持水力高于水芹茎TDF,可能是由水芹叶TDF中SDF占比例较高所致。   相似文献   

15.
以杨梅渣为原料,连续提取水溶性和不溶性膳食纤维,在单因素试验基础上,通过正交试验优化提取工艺条件。试验表明,适宜水溶性膳食纤维提取工艺为:以柠檬酸为浸提剂,料液比(g∶mL)1∶10,pH值2.0,90℃提取75 min,在此条件下提取率达58.62%。适宜的不溶性膳食纤维提取工艺为:料液比(g∶mL)1∶12.5,pH值2.5,60℃提取90 m in,在此条件下提取率达61.25%。所制备的不溶性膳食纤维持水力为570.6%、溶胀性为6.5 mL/g,功能特性良好、生理活性突出。  相似文献   

16.
采用纤维素酶对榨菜皮粗纤维进行改性,分析了在不同温度和p H条件下改性榨菜皮膳食纤维理化性质的变化。结果表明,改性纤维中水溶性膳食纤维含量增加了80.02%,不溶性膳食纤维含量下降9.76%;改性榨菜皮膳食纤维的持水力、吸水膨胀力及NO2-吸附能力均显著提高(p<0.01);改性纤维阳离子交换能力与粗纤维差异显著(p<0.01),并在60℃达到最大值0.657mmol/g;p H7时改性纤维胆固醇吸附能力比p H2时吸附能力强。形貌结构分析显示改性纤维粒径更小,更加疏松,有较大的空腔和裂缝,但主要成分及化学结构没有受到明显的影响。   相似文献   

17.
黄豆酱油渣油脂和膳食纤维的制备研究   总被引:1,自引:0,他引:1  
李学伟  朱新贵  刘滢  曾苑玲 《中国酿造》2013,32(10):109-112
黄豆酱油渣是传统酱油酿造后所产生的废渣,富含大豆油脂和膳食纤维。通过正交试验设计研究提取油脂和膳食纤维的条件。提取油脂最佳工艺:料液比(正己烷量∶酱油渣量)2.5∶1,提取时间90min,提取温度60℃,油脂的提取率为44.1%;脱脂酱油渣膳食纤维最佳提取工艺:脱脂酱油渣经酸处理,并水洗至中性后,按料液比10∶1加入浓度4%的NaOH溶液,提取温度60℃,提取时间60min,膳食纤维的提取率为27.0%。对提取产品进行分析,粗油脂颜色较深,过氧化值为2.26mmol/kg,酸价为51.51mg KOH/g;黄豆酱油渣的膳食纤维呈米白色,其溶胀性和持水力分别为3.20mL/g和4.53g/g。  相似文献   

18.
以梨渣为原料,用酶与碱结合提取的方法,探讨了酶用量、料液比、氢氧化钠溶液浓度、温度和时间对酶碱法提取梨渣水不溶性膳食纤维得率的影响,并对其脱色工艺进行了研究。结果表明,用淀粉酶4 U/g在p H6.0下处理后,在料液比1 g∶15 m L、氢氧化钠溶液浓度1.0 mol/L,温度50℃,时间1 h的条件下提取,梨渣水不溶性膳食纤维的得率最高,达到12.9%。最优的脱色条件是H2O2溶液体积浓度8%,温度60℃,时间3 h。产品的膨胀力、持水力分别达到6.167 g/m L、7.1 g/g。  相似文献   

19.
以酿酒后桑椹果渣为原料,使用糖化酶对桑椹果渣进行去糖、碱提,通过单因素及正交试验进行桑椹果渣中不溶性膳食纤维的提取工艺条件优化,并对提取物进行理化特性研究。结果表明,桑椹果渣中不溶性膳食纤维最佳提取条件为:碱质量分数1.5%、碱提时间2.0 h、碱提温度60 ℃、料液比1∶12(g∶mL),在此优化条件下,不溶性膳食纤维提取率达28.77%,其吸水膨胀性为4.81 mL/g、持水性5.23 g/g、持油性1.6 g/g。  相似文献   

20.
以菠萝蜜、洋蒲桃、莽吉柿、番荔枝为原料,采用化学结合酶法对其膳食纤维进行制备,并利用扫描电镜、红外光谱和化学分析等方法对制备的上述膳食纤维的结构表征、单糖组成和理化性质进行研究.结果表明:番荔枝中膳食纤维的含量较高,达(74.31±0.07)g/100 g;纤维素、半纤维素、木质素在四种热带水果的膳食纤维中含量存在明显...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号