首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 281 毫秒
1.
采用Al-Si钎料对经过Ag-Cu-Ti粉末活性金属化处理的Al2O3陶瓷与5005铝合金进行了真空钎焊,研究了钎焊接头的典型界面组织,分析了钎焊温度对接头界面结构特征及力学性能的影响. 结果表明,接头典型界面结构为5005铝合金/α-Al+θ-Al2Cu+ξ-Ag2Al/ξ-Ag2Al+θ-Al2Cu+Al3Ti/Ti3Cu3O/Al2O3陶瓷. 钎焊过程中,Al-Si钎料与活性元素Ti及铝合金母材发生冶金反应,实现对两侧母材的连接. 随着钎焊温度的升高,陶瓷侧Ti3Cu3O活化反应层的厚度逐渐变薄,溶解进钎缝中的Ag和Cu与Al反应加剧,生成ξ-Ag2Al+θ-Al2Cu金属间化合物的数量增多,铝合金的晶间渗入明显;随钎焊温度的升高,接头抗剪强度先增加后降低,当钎焊温度为610 ℃时,接头强度最高达到15 MPa.  相似文献   

2.
TiNiNb钎焊Cf/SiC与TC4接头组织结构   总被引:1,自引:0,他引:1       下载免费PDF全文
文中在钎焊温度980℃、钎焊时间15 min的条件下,采用Ti54.8Ni34.4Nb10.8(原子分数,%)共晶合金粉末真空钎焊Cf/SiC复合材料与TC4钛合金.用SEM,EDS及差热分析法(DTA)观察测定了钎料组织、成分及熔点,分析了钎焊接头的微观组织结构.结果表明,Ti54.8Ni34.4Nb10.8共晶钎料由Ti2Ni及Ti(Nb,Ni)化合物组成,实际熔点为935℃.钎焊过程中,Ti和Nb元素与复合材料反应形成TiC和NbC混合反应层;钎料中的镍与TC4中的镍发生互扩散,在TC4钛合金侧形成扩散层;连接层由弥散分布的Ti(Nb,Ni)化合物和Ti2Ni相组成.Cf/SiC与连接层界面为接头最薄弱环节,此处易形成裂纹.  相似文献   

3.
Ag-Cu钎料钎焊ZTA陶瓷与TC4钛合金   总被引:1,自引:1,他引:0       下载免费PDF全文
使用Ag-Cu钎料钎焊ZTA陶瓷与TC4钛合金,利用扫描电子显微镜(SEM)、能谱分析仪(EDS)和X射线衍射仪(XRD)等设备分析了钎焊接头界面组织,阐明了反应机理,并研究了钎焊温度对接头界面组织和力学性能的影响. 结果表明,钎焊接头的界面结构为ZTA陶瓷/TiO+Ti3(Cu,Al)3O/Ag(s,s)/Ti2Cu3/TiCu/Ti2Cu/α+β-Ti/TC4合金. 随着钎焊温度的升高,钎缝中Ag基固溶体层变薄,Ti-Cu金属间化合物层变厚,当钎焊温度达到890 ℃时,Ti-Cu金属间化合物几乎占据整了个钎缝区域. 随着温度的升高,接头抗剪强度先增大后减小,在钎焊温度为890 ℃时,接头的室温抗剪强度达到最大值,其值为43.2 MPa.  相似文献   

4.
采用自制的AgCuSnTi钎料对发汗材料Gr/2024Al复合材料和TC4钛合金进行钎焊,对焊后接头界面组织及力学性能进行了分析.结果表明,接头典型界面组织为Gr/2024Al/Ti3AlC2/Ag2Al+Ag3Sn+Al2Cu+Al5CuTi2/Al5CuTi2+Ag3Sn/TC4.钎焊时,活性元素Ti与Gr/2024Al复合材料的石墨基体发生活性反应,实现了TC4与Gr/2024Al复合材料的低温连接,保证了复合材料的力学性能及发汗功能.随钎焊温度升高及保温时间延长,钎缝组织中弥散分布的Al5CuTi2化合物聚集长大成块状,使接头性能下降.当钎焊温度为680℃,保温时间为10min时接头抗剪强度达到最大值17MPa,其为Gr/2024Al复合材料母材强度的70%.  相似文献   

5.
Ag-Cu+WC复合钎料钎焊ZrO2陶瓷和TC4合金   总被引:1,自引:0,他引:1       下载免费PDF全文
采用新型Ag-Cu+WC复合钎料进行ZrO2陶瓷和TC4合金钎焊连接,探究了接头界面组织及形成机制,分析了钎焊温度对接头界面结构和力学性能的影响. 结果表明,接头界面典型结构为ZrO2/TiO+Cu3Ti3O/TiCu+TiC+W+Ag(s,s)+Cu(s,s)/TiCu2/TiCu/Ti2Cu/TC4. 钎焊过程中,WC颗粒与Ti发生反应,原位生成TiC和W增强相,为Ti-Cu金属间化合物、Ag基和Cu基固溶体提供了形核质点,同时抑制了脆性Ti-Cu金属间化合物的生长,优化了接头的微观组织和力学性能. 随钎焊温度的升高,接头反应层的厚度逐渐增加,WC颗粒与Ti的反应程度增强. 当钎焊温度890 ℃、保温10 min时,复合钎料所得接头抗剪强度达到最高值82.1 MPa,对比Ag-Cu钎料所得接头抗剪强度提高了57.3%.  相似文献   

6.
采用Ti-Zr-Ni-Cu钎料对SiC陶瓷进行了真空钎焊,研究了SiC陶瓷真空钎焊接头的界面显微组织和界面形成机理.试验中采用扫描电子显微镜(SEM)对接头组织进行了观察,并进行了局部能谱分析.结果表明,接头界面产物主要有TiC,Ti5Si3,Zr2Si,Zr(s,s),Ti(s,s)+Ti2(Cu,Ni)和(Ti,Zr)(Ni,Cu)等.接头的界面结构可以表示为:SiC/TiC/Ti5Si3+Zr2Si/Zr(s,s)/Ti(s,s)+Ti2(Cu,Ni)/(Ti,Zr)(Ni,Cu).钎焊过程分为五个阶段:钎料与母材的物理接触;钎料熔化和陶瓷侧反应层开始形成;钎料液相向母材扩散、陶瓷侧反应层厚度增加,钎缝中液相成分均匀化;陶瓷侧反应层终止及过共晶组织形成;钎缝中心金属间化合物凝固.在钎焊温度960℃,保温时间10 min时,接头抗剪强度可达110 MPa.  相似文献   

7.
采用Ti-Zr-Ni-Cu钎料对SiC陶瓷进行了真空钎焊,研究了SiC陶瓷真空钎焊接头的界面显微组织和界面形成机理.试验中采用扫描电子显微镜(SEM)对接头组织进行了观察,并进行了局部能谱分析.结果表明,接头界面产物主要有TiC,Ti5Si3,Zr2Si,Zr(s,s),Ti(s,s)+Ti2(Cu,Ni)和(Ti,Zr)(Ni,Cu)等.接头的界面结构可以表示为:SiC/TiC/Ti5Si3+Zr2Si/Zr(s,s)/Ti(s,s)+Ti2(Cu,Ni)/(Ti,Zr)(Ni,Cu).钎焊过程分为五个阶段:钎料与母材的物理接触;钎料熔化和陶瓷侧反应层开始形成;钎料液相向母材扩散、陶瓷侧反应层厚度增加,钎缝中液相成分均匀化;陶瓷侧反应层终止及过共晶组织形成;钎缝中心金属间化合物凝固.在钎焊温度960℃,保温时间10 min时,接头抗剪强度可达110 MPa.  相似文献   

8.
TC4钛合金真空钎焊接头组织与高温性能   总被引:5,自引:4,他引:1       下载免费PDF全文
王刚  吴林志  李鑫  冯吉才 《焊接学报》2014,35(6):100-104
采用高钛含量的粉状Ti-Zr-Ni-Cu钎料实现了TC4钛合金的真空钎焊,分析了不同工艺参数对接头高温(600℃)抗拉强度的影响,并借助扫描电镜(SEM)、能谱分析(EDS)和X射线衍射分析等方法研究了钎焊接头界面组织,确定了界面反应产物及其形态分布.结果表明,在界面反应层中生成五种产物:钛基固溶体、Ti2Ni,Ti3Al,CuTi3,Zr2Ni.随着钎焊温度和加热时间的增加,接头抗拉强度呈现先增大再降低的趋势,当钎焊温度为950℃和保温时间为30 min时,获得最大高温(600℃)抗拉强度为387 MPa的钎焊接头.  相似文献   

9.
开发了一种直流电热冲击辅助高温钎焊新技术,成功实现了18.77Gd2O3?4.83Y2O3?28.22TiO2?8.75ZrO2?39.43Al2O3多组分氧化物钎料与SiC陶瓷母材之间的钎焊连接. 加热元件采用碳纤维编织体,在20 A直流电流及800 W截断功率下,实现了最佳剪切强度为136.27 MPa的SiC钎焊接头. 多组分氧化物钎料中Al2O3及TiO2组分对实现良好的SiC陶瓷钎焊接头至关重要,其中TiO2组分与SiC在高温下发生反应从而在界面处生成厚度约为10 μm的富Ti界面反应层,Al2O3相向母材中渗入而形成的枝状通道起到钉扎效果,有利于提升钎焊接头整体强度. 热输入过大时,SiC母材严重分解,大量C元素向钎缝区扩散,导致钎缝区出现明显裂纹缺陷,剪切强度降低至约60 MPa,断裂完全发生于钎缝区.  相似文献   

10.
采用接触反应钎焊,以Ti/Ni/Ti为中间层,实现了Ti3SiC2陶瓷与TC4合金的连接。钎焊接头的典型界面组织为:TC4/α-Ti + β-Ti + Ti2Ni/Ti2Ni + Ti3AlC + Ti5Si3Cx + TiC/Ti3SiC2。随着钎焊温度的升高和保温时间的延长,钎缝宽度增加,Ti2Ni相含量减少。钎焊温度为980 ℃时,大量的Ti2Ni相分布于反应区;连接温度为1000 ℃时,钎焊接头抗剪强度最高,达到82 MPa,断裂主要发生在陶瓷母材处;随着钎焊温度的继续提升,在反应区和TC4合金界面处出现明显孔洞,接头力学性能显著降低。此外,分析了钎焊接头的形成机制。  相似文献   

11.
通过对比试验优选出了合适钎料,并进行了后续钎焊试验.在钎焊温度800~900℃,保温时间为10 min的条件下,采用Ag-Cu-Ti钎料实现了DD3镍基高温合金与Ti3AlC2陶瓷的真空钎焊连接.利用扫描电镜、能谱仪、XRD等对接头的界面结构进行了分析.结果表明,接头的典型界面结构为DD3/AlNi/Al3(Ni,Cu)5+Al(Ni,Cu)+Agss/(Al,Ti)3(Ni,Cu)5/Al4Cu9+AlNi2Ti+Agss/TiAg/Ti3AlC2.接头的力学性能测试表明,在钎焊温度为850℃,保温时间为10 min的条件下,接头的最高抗剪强度可达135.9 MPa,断裂发生在靠近钎缝的Ti3AlC2陶瓷侧.降低和提高钎焊温度对接头界面组织影响不大,但接头强度有一定程度下降.  相似文献   

12.
陈波  熊华平  毛唯  邹文江 《焊接学报》2016,37(11):47-50
首先选用AgCuTi活性钎料在880℃/10 min参数下对A12O3陶瓷表面进行金属化处理,之后尽量去除金属化层中的AgCu共晶组织,然后选用两种Au基高温钎料在980℃/10 min参数下对金属化后的A12O3进行了钎焊连接.结果表明,在Al2O3/Au-Ni/Al2O3接头中靠近Al2O3母材的界面处生成一层薄薄的扩散反应层,该反应层主要由TiO2和Al2O3组成;在Al2O3/Au-Cu/Al2O3接头中同样存在扩散反应层,与前者不同的是,接头中检测到Ti-Au相的存在.分别对Au-Ni和Au-Cu两种钎料获得的Al2O3接头进行了抗剪强度测试,前者对应接头强度为95.5 MPa,后者对应接头强度达到102.3 MPa.  相似文献   

13.
采用磁控溅射镀膜技术对碳/碳化硅复合材料(C/SiC)表面进行镀Ti金属化,以AgCu28为钎料,无氧铜为中间层与碳钢进行钎焊连接. 研究无氧铜中间层、Ti膜厚度和钎焊温度对接头组织形貌和力学性能的影响. 结果表明,采用无氧铜中间层可有效降低接头的残余应力,提高接头强度,并阻挡C/SiC复合材料中的Si元素在钎焊过程中扩散至碳钢侧,防止了碳钢界面FeSix恶性反应层的形成. 在试验范围内,钛膜厚度和钎焊温度与接头抗剪强度之间均存在峰值关系. 860 ℃,3 μm Ti膜接头平均抗剪强度最高,达到25.5 MPa. 由剪切试样碳钢侧断口,可观察到大量平行断口方向的碳纤维和碳纤维脱粘坑. 断裂发生在C/SiC复合材料内部距界面约300 μm处. C/SiC界面反应产物以Ti5Si3为主,含少量TiC. 钎缝中有TiCuSi相生成.  相似文献   

14.
采用Cu-25Sn-10Ti钎料钎焊SiO2f/SiO2复合材料与Invar合金,研究了界面组织结构及其形成机理,分析了不同钎焊保温时间下界面组织对接头性能的影响.结果表明,在钎焊温度880℃,保温时间15 min的工艺参数下,接头在SiO2f/SiO2复合材料侧与Invar合金侧均形成了连续的界面反应层,界面整体结构为Invar合金/Fe2Ti+Cu(s,s)+(Ni,Fe,Cu)2TiSn/Cu(s,s)+Cu41Sn11+CuTi/TiSi+Ti2O3/SiO2f/SiO2复合材料.在钎焊温度一定时,随着保温时间的延长,复合材料侧TiSi+Ti2O3反应层厚度逐步增加,Fe2Ti颗粒逐步呈大块状连续依附其上,接头强度先增大后减小.当钎焊温度880℃,保温时间15 min时,接头室温抗剪强度达到11.86 MPa.  相似文献   

15.
采用Cu80Ti20钎料在1413~1493 K的温度,保温时间5~15 min的工艺条件下分别进行了Si3N4陶瓷的高温活性钎焊,在所选工艺条件下均成功得到了无明显缺陷和裂纹的钎焊接头,通过对接头组织和成分的分析,接头的组成为Si3N4陶瓷/TiN界面反应层/Cu-Ti化合物+Ti5Si3/TiN界面反应层/Si3N4陶瓷.在1413 K保温10min条件下,固溶体中的Ti元素扩散至钎缝与母材的界面并发生反应,形成了致密连续的厚度约为1 μm的反应层.获得了钎焊温度、保温时间、钎缝宽度及界面层厚度等对接头强度的影响规律,在试验中所采用的工艺参数条件下,接头抗剪强度达到了105 MPa.  相似文献   

16.
为研究钎焊温度对Ti60/Si3N4接头组织与力学性能的影响,采用Ag-28Cu共晶钎料在870~910℃温度区间,保温10 min条件下进行钎焊连接.利用扫描电子显微镜、能谱仪对钎焊接头界面组织进行分析,得到的典型接头界面组织结构为Ti60/Ti-Cu化合物/Ag(s,s)+Cu(s,s)/Ti-Cu化合物/Ti5Si3+TiN/Si3N4,并对钎焊接头的组织演变过程进行了分析.结果表明,随着钎焊温度的升高,Ti60侧的Ti-Cu化合物反应层与Si3N4陶瓷侧的Ti5Si3+TiN反应层厚度逐渐增加,Ag(s,s)与Cu(s,s)含量减少,同时,扩散至Si3N4陶瓷侧的Ti元素与液相中Cu元素反应生成Ti-Cu化合物并在Ti5Si3+TiN反应层中形核.剪切测试表明,在钎焊温度880℃,保温10 min工艺参数条件下获得的接头最大抗剪强度为61.7 MPa.  相似文献   

17.
文中采用Al/Cu/Al复合箔扩散钎焊SiCP/Al复合材料,采用SEM,EDS,XRD分析接头界面组织,研究了钎焊温度对接头界面组织及力学性能的影响,并结合Al-Cu二元相图分析接头形成机制.结果表明,固定连接压力为1 MPa,保温时间为10 min,当钎焊温度从590℃升至640℃,接头界面产物由Al2Cu+αAl共晶组织转变为断续的Al2Cu金属间化合物,Al-Cu液相向两侧母材扩散的距离增加,接头的抗剪强度呈现先增大后减小的变化趋势.当钎焊温度为620℃,保温时间为10 min,连接压力为1 MPa时,接头的抗剪强度达到最大值69 MPa.  相似文献   

18.
李小强  娄立  屈盛官  杨超  李力 《焊接学报》2019,40(10):80-85
采用Ti-Zr-Fe-Cu-Ni-Co-Mo钎料实现了TiAl合金与GH536合金的有效钎焊连接. 运用SEM,EDS,XRD等手段对钎焊接头的界面组织进行了分析,并检测了钎焊接头的抗剪强度. 结果表明,钎焊接头的典型界面组织由TiAl合金一侧到GH536合金一侧包括Ⅰ层(Ti3Al + TiAl)、Ⅱ层(Al3NiTi2)、Ⅲ层(以AlNi2Ti为主,并含有富铬(Cr,Ni,Fe)SS、富镍(Cr,Ni,Fe)SS和(Ni)SS + TiNi3)和Ⅳ层(以富铬(Cr,Ni,Fe)SS为主,并含有富镍(Cr,Ni,Fe)SS,AlNi2Ti和(Ni)SS + TiNi3). 当钎焊时间为10 min时,在1 110 ~ 1 170 ℃的钎焊温度范围内,随着钎焊温度的升高,钎焊接头的抗剪强度先升高后降低. 钎焊温度对原子扩散和金属间化合物的形成有较大的影响,较低或较高的温度都会导致接头强度偏低. 1 150 ℃钎焊10 min获得的接头抗剪强度最高,为183 MPa,接头主要断裂在Ⅱ层.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号