共查询到20条相似文献,搜索用时 9 毫秒
1.
为了更好地确定RBF神经网络中心向量,并且使得最终的RBF神经网络结构可以进一步调整。提出了一种使用熵聚类的算法来首先确定RBF神经网络隐节点的个数及其初始值,实现初始化的基础上使用常规算法调整RBF神经网络的中心和训练宽度,最后使用基于互信息的RBF神经网络修剪算法调整网络结构。并将上述算法应用于COD软测量问题中,仿真实验结果表明:改进的算法与常规的算法相比,提高了训练速度和逼近精度。 相似文献
2.
3.
面对日益复杂的电磁环境,用户对干扰感知技术提出了更高的要求。本文采用一种基于熵理论的干扰感知方法,对六种常见的有源干扰(三种压制式干扰和三种欺骗式干扰)进行特征提取,通过仿真结果分析其在不同熵特征下的差异,得出了熵理论可用于干扰感知技术的结论。其中,信息熵和指数熵能够区分噪声调幅干扰,范数熵能够较好地区分三种压制式干扰和速度欺骗干扰;但三种熵理论方法均难以区分距离欺骗干扰和速度欺骗干扰。同时,通过比较三种熵理论特征提取方法的仿真时间,分析了三种特征提取方法的计算复杂度,得出了范数熵计算复杂度最低的结论。最后,通过朴素贝叶斯分类器确定了三种熵理论方法的识别率。 相似文献
4.
5.
6.
文章介绍了一种基于RBF神经网络七段码识别方法,它是在VC++编程环境下实现的。本系统主要特征是分段线性灰度变换、倾斜度调整、映射归一、特征提取。实验表明这种方法运行速度快、识别率高。这种方法具有一定的实用价值。 相似文献
7.
8.
RBF神经网络是一种局部逼近的多层前向神经网络,具有算法简单,收敛快,逼近效果好,泛化能力强等优点。RBF通过非线性基函数的线性组合实现从输入空间到输出空间的非线性转换。盲均衡则是一种不借助训练序列,仅利用接收序列和发送序列的先验知识来恢复发送序列的方法。文中基于RBF神经网络的研究给出盲均衡的算法综述。 相似文献
9.
雷达干扰信号准确识别是雷达抗干扰的前提,对于雷达生存至关重要。针对传统雷达干扰信号识别方法需要繁琐的分析计算提取特征,通用性差,泛化能力弱,难以适应复杂的雷达工作环境问题。本文考虑无需人工提取特征信息且具有较好的分类识别效果的深度学习网络。考虑到传统的深度学习网络由于使用点估计方式,不能够很好的衡量预测结果中的不确定性,本文提出了一种基于贝叶斯深度学习的干扰识别方法。首先,通过概率建模代替网络参数模型的点估计,解决了不确定性随机数据引起的网络过拟合问题。其次,考虑有效利用雷达回波信号的时序特性设计了LSTM层,同时解决训练过程中的梯度消失问题。基于线性调频雷达有源干扰实测数据完成了网络训练与测试,实验结果表明,引入贝叶斯方法可以在加快网络收敛速度的同时有效提高识别准确率。 相似文献
10.
RBF神经网络是一种局部逼近的多层前向神经网络,具有算法简单,收敛快,逼近效果好,泛化能力强等优点.RBF通过非线性基函数的线性组合实现从输入空间到输出空问的非线性转换.盲均衡则是一种不借助训练序列,仅利用接收序列和发送序列的先验知识来恢复发送序列的方法.文中基于RBF神经网络的硬究给出盲均衡的算法综述. 相似文献
11.
针对复杂电磁环境下干扰信号样本量少而难以识别的问题,提出基于元学习的干扰识别方法。首先计算干扰信号频率响应的Holder系数;然后将干扰信号的时频图经残差网络输出的特征向量与上述Holder系数进行多模态融合组合成新的多维特征向量;最后利用元学习将输出的多维特征向量拆分为编码向量和干扰信号时频图相关的协方差矩阵,计算干扰信号的预测值,通过计算实际值与预测值之间的最短欧氏距离进行干扰信号的识别分类。仿真结果表明,该干扰识别方法能够有效提高在小样本数据集1-shot和5-shot上的识别率。 相似文献
12.
13.
基于遗传优化RBF神经网络的声纹识别研究 总被引:1,自引:2,他引:1
提出了一种基于遗传优化RBF神经网络的声纹识别算法,该算法中采用遗传算法对传统的RBF神经网络基函数中心以及宽度进行优化处理,克服了传统RBF神经网络参数难以确定的缺陷。同时,算法结合心理声学模型,提取了能表现说话人个性特征的Mel倒谱系数为特征进行说话人识别,可较好地提升系统的抗噪性能。仿真实验结果表明,与传统RBF神经网络相比,该方法具有快速学习网络权重的能力,并且网络的全局寻优能力强,使得系统的识别率进一步提高。 相似文献
14.
15.
无线通信中的抗干扰技术对通信的稳定性和安全性都具有重要意义,干扰识别作为抗干扰技术的重要环节一直是研究的热点。该文提出一种基于奇异值分解与神经网络的干扰识别方法,该方法只计算信号矩阵的奇异值即完成特征提取,与传统方法相比节省了多个谱特性的计算量。仿真结果表明:基于奇异值分解与神经网络的干扰识别方法与传统方法相比在干信比为0 dB左右的条件下识别准确率有10%~25%的提高。 相似文献
16.
17.
地下水位的变化是一个复杂的非线性过程,并且地下水位与其影响因素之间存在着复杂的非线性关系。对于处理这类问题神经网络是一种合适的方法。本文对BP和RBF神经网络在地下水位预测中的应用进行比较和研究。通过仿真实例结果显示,BP神经网络和RBF神经网络都能很好的对地下水位进行预测,但是RBF神经网络比BP神经网络的训练速度更快,精度更高,充分体现了RBF神经网络中在地下水位预测中的优越性。 相似文献
18.
介绍了RBF神经网络,并采用CORDIC算法实现了其隐层非线性高斯函数的映射。同时,为缩减ROM表的存储空间并提高查表效率,本设计还采用了基于STAM算法的非线性存储。最后,以Altera公司开发的EDA工具QuartusⅡ作为编译、仿真平台,采用Cyclone系列中的EP1C6Q240C8器件,实现了RBF神经网络在FPGA上的实现,并以XOR问题为算例进行硬件仿真,得出仿真结果与理论值一致。 相似文献
19.
20.
合成孔径雷达(SAR)能够全天时全天候获取感兴趣区域的高分辨率雷达图像,在诸多领域获得了成功应用。在电子对抗博弈环境下,SAR图像解译与情报生成也面临复杂电磁干扰的严重影响。当前,国内外学者提出了许多SAR抗干扰技术方法。然而,作为抗干扰的前提,SAR图像干扰类型识别这一关键技术却鲜有报道。该文针对SAR图像典型有源干扰类型识别开展研究。首先,选取5种典型有源干扰样式,并根据干扰参数,细分为9种干扰类型,作为干扰识别对象。其次,开展干扰信号回波仿真,通过与MiniSAR实测数据进行回波域叠加和成像处理,构建了典型有源干扰类型样本集。在此基础上,提出了一种结合注意力机制的深度卷积神经网络(CNN)模型,并开展了对比实验验证。实验表明,对不同场景和不同干扰参数情形,相比于传统深度CNN模型,该文方法取得了更高的识别精度和更稳健的性能。 相似文献