首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 218 毫秒
1.
贾华  刘政军  李萌  宗琳 《焊接学报》2020,41(3):86-90
采用自保护药芯焊丝明弧堆焊技术制备五组不同钨含量的Fe-Cr-C-B-W合金. 借助金相显微镜、扫描电子显微镜、X射线衍射仪、洛氏硬度计和磨损试验机分析堆焊合金的组织及性能. 结果表明,合金的显微组织由马氏体、残余奥氏体、M7(C,B)3,M3(C,B),Fe3W3C和WC组成. 大部分钨元素被迁移到晶界生成了比WC稳定性更好的Fe3W3C缺碳复合相,堆焊层中没有典型的初生WC硬质相颗粒生成. 随着钨添加量的增多,共晶硬质相M7(C,B)3,M3(C,B)和Fe3W3C随之增多,间距减小,呈连续网状均匀分布. 当钨的添加量为12%时,堆焊层的耐磨性达到最佳.  相似文献   

2.
通过改变稀土元素Y在高铬铸铁耐磨合金体系中的添加量,研究Y元素对堆焊层组织和性能的影响,从而使堆焊层组织发生良性转变,达到提高堆焊合金耐磨性的目的。采用药芯焊丝混合气体保护法明弧堆焊的方法在母材Q235钢表面制作堆焊合金,采用XRD、SEM对堆焊层进行微观组织观察及物相表征;通过洛氏硬度计、湿砂橡胶轮式磨损测试机进行宏观硬度测试、磨损性能测试,并观察磨损形貌,对堆焊层耐磨性进行评价。结果发现,堆焊层主要由奥氏体(γ-Fe)、铁素体(α-Fe)、M7(C,B)3、M2B相组成,添加适量的稀土元素Y后,可以使硬质相分布更加均匀,晶粒更加细小。随着Y元素添加量的提高,堆焊层的硬度、磨损量呈现先减小后增加的趋势。Y元素添加量为1.6%时,堆焊层硬度为67.5 HRC,较未添加时提高17.2 HRC;此时磨损量最小为0.864 g,磨损机制为磨粒磨损。  相似文献   

3.
Fe-Cr-C-B-N系堆焊合金的显微组织及耐磨性   总被引:1,自引:0,他引:1       下载免费PDF全文
刘政军  贾华  勾健 《焊接学报》2017,38(6):105-109
在低碳钢表面采用明弧堆焊的方法制备了不同氮含量的Fe-Cr-C-B-N系堆焊合金.借助X射线衍射仪(XRD)、光学显微镜(OM)、扫描电子显微镜(SEM)、洛氏硬度计和湿砂磨损试验机对堆焊层的组织和性能进行分析.结果表明,堆焊层的显微组织为马氏体+奥氏体+BN+M23(C, B)6+M3(C, B)+M2B.随着氮添加量的增多,组织中有BN生成,初生奥氏体向针状马氏体转变,枝晶间共晶组织的数量减少;堆焊层硬度增加,磨损量出现先减少后增加的趋势.当堆焊层中氮的含量为0.17%时,基体组织与硬质相之间匹配良好,堆焊层的综合性能达到最佳,其硬度值为62.7 HRC,而磨损量仅为0.054 2 g.  相似文献   

4.
贾华  刘政军  李萌  张琨 《焊接学报》2019,40(9):122-127
采用明弧堆焊技术在Q235基体金属表面制备Fe-Cr-C-B-N-Ti系铁基复合材料. 借助金相显微镜、扫描电子显微镜、X射线衍射仪、洛氏硬度计和磨料磨损试验机对铁基复合材料的组织和性能进行分析与测试. 结果表明,铁基复合材料的基体组织由马氏体(M)和少量残余奥氏体(A)组成,硬质相由TiB2,TiN,TiC,M23(C,B)6,M3(C,B)和M2B组成. 随着钛添加量的增多,初生陶瓷硬质相颗粒(TiB2,TiN和TiC)和共晶硬质相(M23(C,B)6,M3(C,B)和M2B)增多,基体组织减少并细化. 当钛添加量为4%时,铁基复合材料的耐磨性达到最佳,此时硬度为66 HRC,磨损量为0.042 9 g.  相似文献   

5.
张彦超  崔丽  贺定勇  周正 《焊接学报》2014,35(3):89-92104
采用直径为1.6 mm的细径药芯焊丝,利用CO2气体保护焊堆焊的方法制备了含有1.0%~3.0%C(质量分数),15%~20%Cr,0%~2.0%B的高铬堆焊合金.研究了B4C含量对堆焊合金的硬度及耐磨性的影响.结果表明,堆焊合金的硬度从57.1 HRC增加到65.2 HRC,硬度提高14.2%;堆焊层合金的相对耐磨性从3.5倍提高到18.0倍.借助光学显微镜、扫描电镜和X射线衍射等微观分析方法,研究了堆焊合金的显微组织及碳化物分布形貌.结果表明,堆焊合金的显微组织主要由铁素体+奥氏体+(Fe,Cr)7C3组成,加入B4C可显著改善堆焊合金层基体组织,使碳化物(Fe,Cr)7C3数量增加且呈弥散分布.  相似文献   

6.
通过OM、SEM、TEM以及显微硬度计等设备研究了1050 ℃下不同渗碳工艺对航空齿轮钢C69组织及性能的影响。结果表明,经渗碳、深冷和回火处理后,渗碳层表层的显微硬度最高可达约950 HV0.3,组织为针状马氏体,马氏体上观察到M3C、M2C碳化物,晶界处有M7C3碳化物分布,次表层组织为针状马氏体和板条马氏体,心部显微硬度约为630 HV0.3,组织主要为板条马氏体。循环渗碳的渗碳效率更高,随循环次数增加,试验钢的表面碳含量和渗碳层深度不断提高,且晶界处M7C3尺寸和数量逐渐增加。4次循环渗碳的表面碳含量为1.14%,渗碳层深度约为3.0 mm。  相似文献   

7.
王皓  胡会娥  迟钧瀚  陈泽  冯子健 《焊接学报》2023,44(3):98-105+113+134-135
用电渣堆焊的方法在D32低合金钢表面堆焊高铬铸铁硬面层,测量了堆焊过程中热影响区的温度场,研究了热影响区、复合界面及硬面层的微观组织和力学性能.结果表明,电渣堆焊加热和冷却速度较慢,稳定阶段时低合金钢基材温度分布均匀,在堆焊方向最大温度梯度为-21.25℃/mm;低合金钢基板内最大热应力为53.4 MPa,低于低合金钢的抗拉强度,有效避免了裂纹的产生;复合界面平整清晰,存在宽度约50μm的奥氏体带状区;热影响区晶粒有所长大,为铁素体加珠光体组织;高铬铸铁硬面层由奥氏体、碳化物和少量马氏体组成,M7C3型碳化物细小且均匀分布于奥氏体晶界;复合界面结合强度为96 MPa;试样熔合区的冲击吸收能量(53 J)较硬面层冲击吸收能量(10.7 J)明显提高;亚共晶高铬铸铁硬面层在较大磨损载荷下发生马氏体相变,硬度提高,耐磨粒磨损性能优良.  相似文献   

8.
Fe-Cr-Ti-C系药芯焊丝熔覆层中硬质相生长模式   总被引:1,自引:1,他引:0       下载免费PDF全文
将Fe-Cr-Ti-C系耐磨药芯焊丝采用钨极氩弧焊堆焊到低碳钢表面,分析熔覆层中的物相组成,研究熔覆层中硬质相的形态分布和生长机理,探究熔覆层的耐磨性及表面硬度等力学性能变化的原因. 结果表明,药芯堆焊焊丝中的合金元素的过渡系数很高,可原位合成(Fe,Cr)7C3和TiC硬质相,TiC优先依附外来界面行核、长大,共晶(Fe,Cr)7C3硬质相则依附于初生马氏体相和TiC形核生长,点状TiC硬质相(少数为条状和十字状)弥散分布于马氏体、残余奥氏体的基体中,与网状的(Fe,Cr)7C3耐磨框架组成复合硬质相,提高熔覆层的耐磨性.  相似文献   

9.
采用激光熔覆技术在3种扫描速率下制备了NiCr/Cr3C2复合涂层,分别采用扫描电镜(SEM)、X射线衍射仪(XRD)、显微维氏硬度计、摩擦磨损试验机表征了熔覆层的组织形貌、硬度与摩擦磨损性能。结果表明,激光扫描速率从2 mm/s升至4 mm/s时,熔覆层组织从以树枝晶为主转变为以等轴晶为主,缺陷由气孔转变为大尺寸间隙与裂纹。扫描速率低于3 mm/s时,Cr3C2熔化分解导致熔覆层主要含有Cr7C3,随着激光扫描速率增加,Cr3C2熔化程度降低,熔覆层以Cr7C3与Cr3C2为主。因此,随着激光扫描速率从2 mm/s升高至4 mm/s,熔覆层硬度从400 HV0.3提升至780 HV0.3。不同激光扫描速率下熔覆层磨损均以磨粒磨损为主,但是由于结构致密和硬度较高,3 mm/s涂层磨损量最小,耐磨性最好。  相似文献   

10.
将纵向磁场引入到Fe5铁基合金粉末的等离子弧堆焊过程中,通过磁场的作用影响堆焊层中硬质相的形态及分布.利用金相显微镜和X射线衍射研究堆焊层中硬质相Cr7C3的显微组织和取向行为.结果表明,具有顺磁性的硬质相Cr7C3在外加磁场的作用下进行形核及长大的过程中有明显的取向现象,在磁场电流为3 A时,堆焊层中硬质相的分布形态最佳,以细小的"六边形"为主,可以显著提高堆焊层的影响和耐磨性;硬质相的取向机理主要是高温的旋转取向和低温的择优取向.  相似文献   

11.
M7C3的形态分布对铁基复合层耐磨性能的影响   总被引:2,自引:0,他引:2       下载免费PDF全文
刘政军  苏允海 《焊接学报》2008,29(1):65-68,72
研究了在电磁搅拌的作用下,硬质相M7C3(主要是(Fe, Cr)7C3和Cr7C3)的数量和形态分布对堆焊层金属耐磨性的影响规律.对堆焊试件进行耐磨、硬度试验,并采用SEM,XRD对堆焊进行显微组织和成分分析.发现随着磁场参数的改变,硬质相M7C3由杂乱无章的分布逐渐转变为较规则的六方块状分布,堆焊层金属的耐磨性也随之增强;当磁场电流为3A,磁场频率为10Hz时,堆焊层金属的性能达到最佳状态,此时堆焊层中硬质相(M7C3)均成较规则的六方块状分布.结果表明,在适当的磁场参数作用下,硬质相(M7C3)成较规则的六方块状分布可以显著的提高堆焊层金属的耐磨性.  相似文献   

12.
采用CO2气体保护焊方法,使用高铬铸铁药芯焊丝,喷射优化设计的Cr-Ti-Mn-B系粉体形成耐磨堆焊层。利用XRD及金相显微镜分析堆焊层组织结构,并测定堆焊层的硬度和磨损性能。结果表明:与单纯高铬铸铁芯堆焊层相比,喷射粉体后堆焊层的洛氏硬度HRC增加,当Mn铁、Cr铁、B铁、Ti铁质量分数比为4.3∶52.2∶3.9∶39.6时,堆焊层硬度和耐磨性最高。喷射粉体堆焊层以马氏体为主,并有(Cr,Fe)7C3,FeMn2等相产生,从而提高堆焊层硬度和耐磨性。  相似文献   

13.
硼对等离子熔覆高硼铁基合金组织和性能的影响   总被引:3,自引:4,他引:3       下载免费PDF全文
采用等离子弧熔覆技术在20g钢表面堆焊Fe-Cr-B-C系的铁基复合材料,利用X射线衍射(XRD),光学显微镜(OM),扫描电镜(SEM),洛氏硬度计及湿砂磨损试验机等试验设备进行检测、试验,研究不同硼加入量对熔覆层显微组织与性能的影响规律.结果表明,熔覆层显微组织由过饱和α-Fe枝晶固溶体、枝晶间硼化物共晶组织以及碳化物等组成;熔覆层中硬质相主要有Cr2B,CrB2,Fe2B,Cr7C3,B4C等;随着硼含量的增加,硼化物明显增多,当硼添加量为5%时熔覆层的硬度及耐磨性达到最佳,其硬度值为66.1 HRC,磨损量仅为0.383 g;继续增加硼的添加量,熔覆层的耐磨性能降低.  相似文献   

14.
原位合成TiC-M7C3陶瓷硬质相显微组织的分析   总被引:1,自引:1,他引:0       下载免费PDF全文
采用等离子弧堆焊技术原位合成TiC-M7C3陶瓷硬质相,探讨堆焊层中TiC-M7C3硬质相对堆焊层耐磨性的影响.利用X射线衍射仪(XRD)、扫描电镜(SEM)、能谱分析仪(EDS)、洛氏硬度计及湿砂磨损试验机等设备进行检测分析.结果表明,堆焊层是由高碳马氏体基体和大量弥散分布在基体中的TiC,M7C3陶瓷硬质相构成的过共晶组织;堆焊层表面的洛氏硬度为66.4 HRC,磨损量为0.086 g.TiC可以作为M7C3陶瓷硬质相的形核核心,提高了M7C3陶瓷硬质相的形核率,促使其晶粒细化;在TiC和M7C3陶瓷硬质相的共同作用下,Fe-Cr-Ti-C系合金比相同Cr元素含量的Fe-Cr-C系合金堆焊层的硬度更高,抗磨损性能更好.  相似文献   

15.
采用等离子弧堆焊设备在低碳钢表面堆焊一层Fe—Cr-Ti—C系陶瓷复合堆焊合金,原位合成TiC和M7C3陶瓷硬质相,分析熔池中TiC和M7C3陶瓷硬质相的形成机制.利用X射线衍射仪(XRD)、扫描电镜(SEM)、能谱分析仪(EDS)等设备进行检测分析.结果表明,堆焊层中原位合成了“十字开花状”、“短杆状”、“颗粒状”的TiC陶瓷硬质相和不规则“六角杆状”的M7C3陶瓷硬质相;部分TiC和M7C3陶瓷硬质相紧密结合,提高了TiC陶瓷硬质相与基体组织的结合强度;M7C3可以附着在TiC颗粒上生长,TiC硬质相的形成提高了M7C3的形核率.  相似文献   

16.
轻质多主元合金是一种新型的轻质合金,拥有独特的晶体结构以及力学性能,在航空航天领域具有极大的发展潜力。本文采用电弧堆焊的方法在TC4钛合金表面制备Al-Ti-Cu轻质多主元合金熔覆层,堆焊材料为Al-Ti-Cu绞股焊丝,制备出的熔覆层与基体呈现出良好的冶金结合,进一步拓宽了轻质多主元合金的应用。采用X射线衍射仪(XRD)、扫描电子显微镜(SEM)、能谱仪(EDS)对熔覆层的组织和力学性能进行了研究。借助密度测试仪、维氏硬度仪、摩擦磨损测试仪、万能力学性能测试机对熔覆层的密度、硬度、耐磨性和强度进行研究。结果表明,熔覆层主要存在BCC结构的AlCu_2Ti相和少量的CuO相和Fe_2Ti_3O_9相。熔覆层枝晶形态整体呈现为花瓣状。在室温下,熔覆层的平均硬度为340.8 HV,熔覆层干摩擦磨损失效形式为粘着磨损和氧化磨损;熔覆层耐磨性强于45钢、磨损体积是45钢的85%。熔覆层密度为4.88 g/cm~3,压缩率为26%,压缩强度为1 187 MPa,比强度约为2.661×10~5(N·m~(-2))/(kg·m~(-3))。接近Ti合金的比强度,属于比强度较高的轻质合金。  相似文献   

17.
The effect of micro-blasting on the tribological properties of TiN/MT-TiCN/Al2O3/TiCNO coatings was studied. The multilayer coatings were deposited on cemented carbides by chemical vapor deposition. The microstructure, mechanical and tribological properties were investigated using X-ray diffraction, scanning electron microscopy (SEM), nano-mechanical testing system, scratch tester and reciprocating tribometer. The results show that micro-blasting significantly reduces the surface roughness and converts the residual tensile stress of Ti(C,N,O) top-layer and Al2O3 layer into compressive stress. Affected by the residual compressive stress, the hardness and adhesion strength are increased. More importantly, the friction coefficient is decreased attributed to the decreased surface roughness and improved hardness. Also, the wear resistance of micro-blasted TiN/MT-TiCN/Al2O3/TiCNO is superior due to higher hardness of Ti(C,N,O) top-layer, Al2O3 layer and adhesion strength of coatings. Especially for the total sliding time of 2 h, the wear volume and wear rate of micro-blasted coatings are 69.4% of as-deposited coatings, because micro-blasting helps to increase the adhesion strength and micro-cracking resistance, which play important roles in the improvement of wear resistance. Micro-blasting has a positive effect on the friction and wear properties of TiN/MT-TiCN/Al2O3/TiCNO multilayer coatings since the adverse impact of top-layer thinning is offset.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号