首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为提高热误差预测精度和鲁棒性,提出一种基于注意力机制和深度学习网络的数控机床热误差预测模型。采用数据转化策略,将数控机床原始温度数据转化为温度图像,直接作为深度学习网络的输入;提出一种基于注意力机制的温度敏感点识别网络,根据温度测点与热误差关联程度,赋予各温度测点不同的权值,避免了温度测点的人为选取弊端;建立12层深度CNN学习预测网络,利用其强大的图像特征学习能力,挖掘温度图像与热误差的非线性映射关系,无需对温度关键点进行预选择,保留了更多的热误差与机床温度特征关系,显著提高了模型预测精度。为了提高热误差模型的精度与泛化能力,引入Dropout正则化方法和Adam优化算法,对深度卷积神经网络的结构与参数进行了优化。该方法在针对G460L型数控车床的热误差验证中表现出较高的预测精度。通过与BP神经网络和多元回归等传统热误差模型进行对比,深度卷积神经网络框架下的热误差模型在泛化性指标上表现更优。  相似文献   

2.
在高精度加工过程中,数控机床主轴误差对加工精度的影响较为严重。数控机床热误差占总误差比例高达40%~70%,是主要的误差源之一。为了提高热误差预测的精度,提出了一种使用海马优化算法(SHO)优化时序预测网络(LSTM)的精密车床主轴热误差预测建模方法。首先,利用羚羊优化算法(GOA)对模糊C均值聚类(FCM)的模糊矩阵常数、最大迭代次数、迭代终止条件进行优化并结合Person、Spearman和Kendall相关分析方法优化温度测点,使用手肘法确定最优分组规模。根据DB、BWP和Silhouette聚类评估指标评估温度测点聚类效果。其次,以车床主轴五点法获取的热误差数据和优化后的温度数据作为输入,使用SHO对LSTM的隐含层节点、全连接层节点、学习率、L2正则化常数进行优化,并使用S折交叉试验方法确定最优分组规模,建立主轴热误差SHO-LSTM预测模型。再次,在不同转速下对构建的热误差模型进行基于平均绝对误差MAE、均方根误差RMSE和平均绝对百分比误差MAPE的预测效果进行评估。最后在CKA6163A型车床上进行实例验证,使用五点法进行测量辨识,同时测量主轴附近的温度。实验结果表明:所提出的温度测点优化算法相比未优化的模糊C均值聚类(FCM)的DB指标降低了89%,BWP和Silhouette分别提高了59%和8.17%,对比结果表明优化后的聚类算法可有效降低温度测点间的共线性,提高预测模型的预测效率。所提出的海马优化算法(SHO)优化时序预测网络(LSTM)与未优化的时序预测网络(LSTM)相比,所提出的预测网络的均方根误差RMSE降低了42%,表明海马优化算法(SHO)可以提高时序预测网络(LSTM)的准确性;与天鹰(AO)优化卷积神经网络(CNN)相比,所提出的预测网络的均方根误差RMSE降低了3%;与反向传播神经网络(BP)相比,所提出的预测网络的均方根误差RMSE降低了57%,对比结果表明SHO-LSTM主轴热误差预测模型的鲁棒性和准确性更高。  相似文献   

3.
在高精度加工过程中,数控机床主轴误差对加工精度的影响较为严重。数控机床热误差占总误差比例高达40%~70%,是主要的误差源之一。为了提高热误差预测的精度,本文提出一种使用海马优化算法(SHO)优化时序预测网络(LSTM)的精密车床主轴热误差预测建模方法。首先,利用羚羊优化算法(GOA)对模糊C均值聚类(FCM)的模糊矩阵常数、最大迭代次数、迭代终止条件进行优化并结合皮尔逊(Person)、斯皮尔曼(Spearman)和肯德尔(Kendall)相关分析方法优化温度测点,使用手肘法确定最优分组规模,根据DB(Davies–Bouldin)、BWP(Bregman Within–class Projection)和Silhouette(Silhouette coefficient)聚类评估指标评估温度测点聚类效果。其次,以车床主轴五点法获取的热误差数据和优化后的温度数据作为输入,使用海马优化算法(SHO)对时序预测网络(LSTM)的隐含层节点、全连接层节点、学习率、L2正则化常数进行优化,并使用S折交叉试验方法确定最优分组规模,建立主轴热误差SHO–LSTM预测模型。再次,在不同转速下对构建...  相似文献   

4.
对现有的精密数控机床主轴系统进行常规工况实验和空运转实验,提出一种数控机床热平衡试验方法,通过该实验方法可以获得数控机床主轴系统的热敏感点、温度场数据和热位移场数据以及热平衡时间等热态特性,以校验理论仿真分析,并建立误差模型,从而实现对主轴系统热特性的快速校核与加工误差补偿.在具有3个独立磨头主轴系统的直线滚动导轨精密曲面成形数控磨床上,开展多主轴系统热平衡试验方法的具体案例研究,获得了其中两个理论上相同的立式磨头的主轴系统温升变化曲线、热变形变化曲线和热平衡时间等不同的热态特性,论证了多主轴热平衡实验对于消除多主轴机床差异性上的重要性,弥补了多轴系统热态特性分析在理论上分析的不足.通过将热平衡试验获得多主轴系统的热态特性结果用于指导热误差补偿工作,减小了机床热误差控制及补偿难度,提高了机床加工直线导轨曲面精度与工作效率.  相似文献   

5.
在对现有的精密数控机床主轴系统进行常规工况实验和空运转实验研究基础上,提出一种数控机床热平衡试验方法,通过该实验方法可以获得数控机床主轴系统的热敏感点、温度场数据和热位移场数据以及热平衡时间等热态特性,以校验理论仿真分析,并建立误差模型,从而实现对主轴系统热特性的快速校核与加工误差补偿.在具有3个独立磨头主轴系统的直线滚动导轨精密曲面成形数控磨床上,开展多主轴系统热平衡试验方法的具体案例研究,获得了其中两个理论上相同立式磨头的主轴系统的温升变化曲线、热变形变化曲线和热平衡时间等不同的热态特性,论证了多主轴热平衡实验对于消除多主轴机床差异性上的重要性,弥补了其在理论上分析的不足.同时,通过热平衡试验获得多主轴系统的热态特性结果,用于指导热误差补偿工作,减少机床热误差控制及补偿难度,提高机床加工直线导轨曲面精度与工作效率效果明显.  相似文献   

6.
为了合理减少温度测点数量并有效提高温度数据采集与分析的效率,提出了一种基于粗糙集与偏相关分析相结合的温度测点约简方法。首先,利用偏相关分析的方法建立了温度变量与主轴热误差之间的偏相关系数,并以此为依据辨识了主要的敏感温度变量。然后,在基于粗糙集理论获取的可行温度测点组合基础上,筛选出包含敏感温度变量最多及偏相关度高的温度测点组合。最后,建立了热误差线性回归模型,并在某型号数控机床上进行验证与分析。结果表明:温度传感器测点可由22个减少到6个,在很大程度上提高了热误差模型的精确性和鲁棒性。  相似文献   

7.
为实现数控机床热误差的补偿,提出了基于灰色综合关联度的灰色-模糊聚类算法和最小二乘支持向量机(LS-SVM)对数控机床热误差元素进行优化建模的方法.该方法通过计算各温度测点和热误差数据间的灰色综合关联度,确定灰色相似矩阵,并利用最大树法,得到基于不同水平的聚类结果形成的谱系图,从而确定关键测温点,再利用最小二乘支持向量机方法构建数控机床热误差补偿模型.以MDV-55立式精密加工中心为实验对象进行建模补偿,结果表明,该方法不仅减少了温度传感器的数量,而且机床的加工精度也得到了显著改善.  相似文献   

8.
针对机床主轴热误差对准静态精度影响的关键问题,提出了一种基于改进鸡群优化(MCSO)算法及支持向量(SVM)的热误差预测模型。利用基于非监督学习的谱聚类与Spearman关联分析辨识主轴关键敏感温度测点,降低温度数据分布于数量的依赖,削弱温度变量间的多重共线性。引入Levy飞行策略至母鸡个体局部搜索过程,构建了非线性动态自适应惯性权重更新雏鸡策略,基于MCSO-SVM进行核函数、罚因子以及偏差量的全局优化,分别采用MCSO-SVM、BP-GA、GA-SVM和CSO-SVM热误差建模,同时对不同转速下的模型预测能力进行对比分析。热误差实验测量与预测结果表明:谱聚类与Spearman关联分析可有效降低温度变量共线性导致的耦合作用;MCSO-SVM可实现典型转速下主轴五项热误差的高精度预测,模型具备较好的泛化能力和鲁棒性。  相似文献   

9.
基于最小二乘支持向量机的数控机床热误差预测   总被引:5,自引:2,他引:3  
为实现数控机床热误差的补偿控制,提出基于最小二乘支持向量机进行数控机床热误差建模预测的方法.根据最小二乘支持向量机回归预测的原理,优化选择最小二乘支持向量机参数,对数控车床热误差进行最小二乘支持向量机建模.通过测量数控车床主轴温升值与主轴热变形量,将获得的数据进行最小二乘支持向量机建模训练,以建立机床热误差预测模型.实验结果表明,该模型能有效描述热动态误差,与最小二乘法建模进行比较,结果显示,基于最小二乘支持向量机的数控机床热误差预测模型精度高、泛化能力强;采用最小二乘支持向量机得到的预测模型可用于数控机床热误差实时补偿,以提高机床的加工精度.  相似文献   

10.
针对机床热误差建模技术当中温度布点选取的问题,提出了基于灰色综合关联度进行数控机床热误差建模的关键温度测点选取的新方法.将该方法应用于一台数控车削中心的实验研究,将原有16个温度测点减少至4个.通过同已有方法的比较表明,该方法具有计算简便,判据简易、明晰的优点,能够较大幅度提高所建立模型的鲁棒性.  相似文献   

11.
为了减小滚齿机工作台变形对加工精度的影响,对工作台热、力变形进行了研究,提出一种基于子种群自适应思维进化算法优化反向传播(SAMEA-BP)神经网络的滚齿机工作台热-力变形预测方法。通过SAMEA对BP神经网络的初始值、权重和阈值等参量进行调整,有效提升了基于神经网络的热-力变形预测准确度。结合K均值聚类策略和灰色关联分析(GRA)对影响热误差的温度测点进行耦合性和关联度分析,将热误差输入变量从8个测点减少到3个;针对滚齿加工中切削力导致的工作台变形,利用机床主轴电流表征切削力,并作为预测模型的输入变量。试验结果表明:本文模型平均预测精度为95.1%,与其他模型进行的对比分析验证了本文SAMEA-BP模型的有效性和泛化性。  相似文献   

12.
引入信息论和图论的相关方法,采用互信息量来描述测点温度与主轴热变形的相关性.通过图论中的邻接矩阵来表示无线传感器间的通信路径,利用Warshall算法判断图的连通性,得到传感器间的通信可达性,从而保证测点选择满足通信可靠性约束条件.采用人工鱼群算法求解在该约束条件下的大规模组合优化问题,在合理的时间耗费内得到可选测点组合的优化解.在数控机床主轴热误差建模实验中,通过有、无约束条件2种情况下的建模实验验证了该传感器方法的有效性  相似文献   

13.
数控机床在加工过程中,受各种热源的作用形成不均匀的温度场,各部件产生不同程度的热变形,造成加工误差,使加工精度下降。本文利用虚拟样机技术,对XH718数控铣床主轴系统的热特性进行分析,建立了机床主轴系统热特性分析的数学模型和有限元分析模型,计算出机床主轴系统的温度场和热变形,为机床机构优化奠定了基础。  相似文献   

14.
为减少热误差对数控机床加工精度的影响,针对华中数控HNC-848型数控系统机床设计了一种嵌入式热误差补偿装置。该装置采用基于STM32+FPGA的嵌入式系统设计方法,实现机床温度数据获取、热误差建模、热误差补偿执行等功能。利用采集的前2 160组优化后机床测温点数据在STM32处理器内进行多元线性回归热误差建模,后2 160组优化后数据进行热误差预测。测试结果表明该装置热误差预测效果良好。通过在机床数控系统编写补偿子程序,利用该热误差补偿装置,实现了热误差实时补偿功能。  相似文献   

15.
基于多体理论的五坐标数控机床的热误差建模   总被引:2,自引:0,他引:2  
基于多体系统理论,针对数控机床加工系统中主轴部分的热误差,首次提出了五轴联动数控机床的热误差模型,并在MAKINO四轴加工中心几何误差参数辨识结果和主轴热误差参数辨识结果的基础上对该模型进行了仿真验证;仿真实验显示该建模方法具有良好的工程应用前景。  相似文献   

16.
五轴数控机床运动误差建模与测试技术   总被引:1,自引:0,他引:1  
针对双轴旋转工作台五轴数控机床,运用齐次变换矩阵建立了机床运动误差模型,并得到了相应的简化模型.为了测量双轴转台五轴数控机床的运动误差,提出一种基于双球杆仪的五轴机床运动误差分离方法.此方法通过控制数控机床的运动,使机床的任意1个旋转轴与2个直线轴构成三轴联动而另外2个轴保持静止,据此设计了6种机床运动轨迹来测量误差.在测量过程中采用双球杆仪来测量主轴与工作台之间的相对距离,将所测特定位置处的长度值代入误差模型即可得出机床的运动误差.该方法大大简化了数学模型的计算和误差分离的整个过程.仿真分析表明:此方法可以精确地分离出五轴数控机床的旋转工作台的所有8个运动误差,是一种非常有效而简便的五轴数控机床运动误差测量方法.  相似文献   

17.
五轴机床误差建模与补偿解析新算法   总被引:1,自引:0,他引:1  
为了建立合理的五轴数控机床综合误差补偿模型,基于机床各部件为刚体联接的假设下,简化了机床运动学约束拓扑关系,本文提出了基于多刚体动力学的综合误差理论模型,并对误差分量进行分析,建立了误差参数表。机床热误差测量点分布离散且采样数据量大,结合灰色综合关联度算法,将离散点数据表征其关联关系,并拟合出各轴热误差量曲线,建立了机床热误差预测模型。综合机床各轴热误差产生的机理,定义了针对主轴热误差和进给轴热误差的新型测量法—5点测量法和6点测量法,大量实验证明理论预测辨识模型曲线与实验结果一致,残差范围在0~12um之间。基于机床误差线性叠加假设,将机床几何误差和热误差统一建模,提出了新型综合误差补偿模型。将此补偿模型用SIMEMS840D数控系统中的PMC单元开发实时补偿软件,大量实验表明某五轴数控机床的加工精度有了显著的提高,完成补偿后误差变化量在 0~29μm之内。  相似文献   

18.
重型数控机床热误差的分离与建模   总被引:1,自引:1,他引:0  
为解决重型数控机床热误差严重的问题,提出一种基于线性回归的热误差分离和建模方法.对机床的几何误差与热误差进行分离,得到相应的热误差参数;结合主因素和互不相关等温度传感器优化布置策略,选出相应的热误差关键点;采用线性回归理论进行热误差的建模.在一台型号为TK6920的重型数控落地铣镗床上进行了立柱热倾斜误差补偿实验.结果表明:利用所建立的热误差模型进行补偿,立柱在X和W方向的直线度误差分别由0.45 mm和0.25 mm降到了0.13 mm和0.09 mm,补偿率分别为71%和64%.采用误差补偿技术可降低重型数控机床的热误差,从而提高其加工精度.  相似文献   

19.
针对机床热误差建模温度变量多、非线性度高的问题,提出了一种基于投影追踪回归的建立数控机床热误差模型的新方法。与传统的回归建模方法相比,该方法具有模型简单、计算简便的优点。将该方法应用于一台数控车床的实验研究,建立了该车床的热误差模型。实验结果表明,新方法能够大幅提高所建模型的精度及鲁棒性,进而提高机床的加工精度。  相似文献   

20.
数控机床热误差的时序分析法建模及其应用   总被引:10,自引:4,他引:6  
提出了采用时间序列分析法进行机床热误差建模的基本原理及方法,及其在数控机床热误差补偿建模中的应用。利用实测的热误差序列进行时序分析识模、建模和预报。再通过由微机结合机床控制器构成的补偿系统,利用所建立的时序分析模型,经过微机算出补偿值并送入机床控制器对刀架进行附加进给运动完成实时补偿。实验结果表明,可将工件的尺寸变化从原来的25 μm以上降到10 μm以内,大幅度提高了机床的加工精度,从而论证了时序分析法在数控机床热误差建模应用中的可行性与有效性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号