首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 156 毫秒
1.
采用正交法考察了各因素对浸取纯化黄酮工艺的影响,确立了离子交换纤维纯化黄酮的最佳工艺.获得浸取银杏叶黄酮的最佳条件:以pH值为8的70%的乙醇溶液,在75℃浸提3.5h;强碱阴离子交换纤维吸附黄酮的最佳条件:上柱药液的pH=4,药液流速0.38mL/min,药液质量浓度0.5289mg/mL,固液比1:200;吸附在强碱阴离子交换纤维上的黄酮动态解吸的最佳条件:HCL浓度2mol/L,流速0.5mL/min,解吸剂是体积分数为60%的乙醇,体积60mL.实验结果表明用强碱性阴离子交换纤维提纯黄酮方法可行.  相似文献   

2.
采用正交法考察了各因素对葛根素纯化工艺的影响,确立了离子交换纤维纯化葛根素的最佳工艺.结果表明:强碱阴离子交换纤维吸附葛根素的最佳条件是上药液的pH=7,药液流速0.17 mL/min,药液质量浓度为1.6 mg/mL,溶剂为75%的乙醇.吸附在强碱阴离子交换纤维上的葛根素动态解吸的最佳条件是乙酸浓度为2.5 mol/L,解吸液体积与纤维床体积的比值为8.实验结果表明用强碱阴离子交换纤维纯化葛根素是可行的.  相似文献   

3.
离子交换纤维动态吸附和解吸桑叶多糖的研究   总被引:1,自引:0,他引:1  
在动态条件下,用强碱性阴离子交换纤维分离纯化桑叶中的多糖,分别研究了流速、pH值、上柱液体积和浓度对多糖动态吸附和解吸的影响,并计算了动态吸附活化能.结果表明:在初始质量浓度为0.38 mg/mL,pH=6,体积为30 mL,流速为0.5 mL/m in的条件下,交换纤维对多糖的吸附效果最佳,吸附活化能为37.45 kJ/mol,饱和吸附量为232.22 mg/g;而使用体积分数为60%的乙醇溶液为解吸剂,pH=1,解吸剂体积与纤维床体积比例为5时,解吸效果较好.实验结果表明用离子交换纤维提取纯化多糖的方法可行.  相似文献   

4.
研究不同型号树脂对刺玫果总皂苷的纯化效果及刺玫果总皂苷体外活性。分别采用LSA-21、D-101和AB-8等8种型号的大孔树脂对刺玫果总皂苷进行纯化,通过紫外-可见分光光度法测定吸光度,从而计算吸附率和解吸率吸附率和解吸率。结果表明, LSA-21型大孔树脂对对刺玫果总皂苷的纯化效果最好,其最佳工艺条件为:吸附液浓度为0.1927 mg/mL,吸附液体积为25 mL,吸附液pH为6.5,乙醇体积分数为90 %,解吸液体积为40 mL,解吸液pH为8.5。在上述纯化条件下,刺玫果总皂苷的吸附率、解吸率分别可以达到77.51 %和65.28 % ,干浸膏中总皂苷的含量由9.49 %提高到33.65 % 。试验结果表明,刺玫果总皂苷对DPPH·、·OH、超氧阴离子自由基、ABTS自由基均具有清除能力,同时具有一定的体外抗氧化活性,并能够抑制脂质和α-葡萄糖苷酶的活性,试验结果为刺玫果总皂苷的进一步研究提供了参考。  相似文献   

5.
大孔树脂法纯化刺玫果总皂苷工艺研究   总被引:4,自引:1,他引:3  
选取6种大孔吸附树脂对刺玫果总皂苷进行纯化,并采用静态吸附-解吸与动态吸附-解吸相结合的方法,确定大孔吸附树脂纯化刺玫果总皂苷的最佳工艺条件.采用紫外可见分光光度法测定刺玫果总皂苷的含量,并对工艺进行评价.试验结果表明,D-101型大孔吸附树脂的纯化效果最好,其最佳工艺为:上样药液总皂苷浓度为3.409 mg/mL,吸附速率为3 BV/h,解吸液乙醇浓度为95%,解吸速率为3 BV/h,最佳上柱药液pH值为89,洗脱剂用量为4倍柱体积;经D-101大孔吸附树脂纯化后刺玫果总皂苷的纯度为粗提物的3.99倍.结果表明,D-101大孔吸附树脂适用于刺玫果总皂苷的初步纯化.  相似文献   

6.
选取6种大孔吸附树脂对刺玫果总皂苷进行纯化,并采用静态吸附-解吸与动态吸附-解吸相结合的方法,确定大孔吸附树脂纯化刺玫果总皂苷的最佳工艺条件.采用紫外可见分光光度法测定刺玫果总皂苷的含量,并对工艺进行评价.试验结果表明,D-101型大孔吸附树脂的纯化效果最好,其最佳工艺为:上样药液总皂苷浓度为3.409 mg/mL,吸附速率为3 BV/h,解吸液乙醇浓度为95%,解吸速率为3 BV/h,最佳上柱药液pH值为8~9,洗脱剂用量为4倍柱体积;经D-101大孔吸附树脂纯化后刺玫果总皂苷的纯度为粗提物的3.99倍.结果表明,D-101大孔吸附树脂适用于刺玫果总皂苷的初步纯化.  相似文献   

7.
研究利用大孔吸附树脂对水蜈蚣总多酚进行纯化的最佳工艺及其体外抗氧化性能。采用静态和动态吸附与解吸的方法对水蜈蚣提取液中的总多酚进行纯化,以吸附率和解吸率为指标,利用紫外分光光度计测量总多酚的含量。最佳树脂为DM-301型,最佳动态工艺条件:上样液体积25 mL,总多酚质量浓度为0.834 mg/mL,吸附流速2 BV/h,样品液pH值为2.0,解吸液乙醇体积分数为75%,洗脱液用量为30 mL,洗脱流速3 BV/h。纯化后浸膏中的总多酚纯度可达39.4%。该工艺操作简单,重复性好,适合水蜈蚣总多酚的纯化。考察提取液对DPPH、ABTS、超氧阴离子自由基的清除能力,并用Vc作为对比,结果表明,水蜈蚣总多酚的抗氧化能力与Vc的抗氧化能力接近。  相似文献   

8.
研究了刺五加叶中刺五加皂苷的提取工艺,考察了提取温度、浸提时间、乙醇体积分数、料液比等因素对刺五加皂苷提取结果的影响,并采用柱层析法进行纯化,优化了洗脱剂乙醇的体积流量及体积分数。采用分光光度法对刺五加皂苷进行定量分析,最佳提取条件为:浸提温度80℃,浸提时间5h,乙醇体积分数70%,料液比1∶6;最佳纯化条件为:乙醇的体积流量27.22×10-6 m3/min,洗脱乙醇的体积分数60%。在最优提取纯化条件下,刺五加皂苷的得率为5.9%,质量分数为44.1%。  相似文献   

9.
采用静态吸附-解吸与动态吸附-解吸相结合的方法,以解吸率为主要指标考察各因素对铁苋菜总黄酮大孔吸附树脂纯化工艺的影响.DM301型大孔吸附树脂纯化铁苋菜总黄酮的最佳工艺为:上柱药液铁苋菜浓度为1.462 mg/m L,吸附速率为2 BV/h,解吸液乙醇浓度为75%,解吸速率为2 BV/h,最佳上柱药液p H值为4,洗脱剂用量为10/3柱体积.经大孔吸附树脂分离纯化后,铁苋菜总黄酮含量由7.4%提高到30.9%.  相似文献   

10.
选择6种大孔吸附树脂分离大豆糖蜜中的异黄酮,考察大孔吸附树脂对大豆糖蜜中异黄酮的吸附能力,并以糖蜜中异黄酮浓度、吸附液流速、吸附液pH值为参数进行单因素试验.结果表明:最佳树脂为LS-800,其静态吸附率为64.12%,静态解吸率为69.39%;动态吸附条件为:吸附液中异黄酮质量浓度1.23 mg/mL,吸附液流速1 mL/nin,吸附液pH值4.0,吸附率为89.50%;动态解吸条件为:解吸液为体积分数为80%乙醇水溶液,解吸液流速1 mL/min,解吸率为86.22%.经大孔树脂分离纯化后,产品中的异黄酮含量为56.03%,回收率为68.82%.  相似文献   

11.
微波萃取核桃油工艺   总被引:16,自引:2,他引:16  
用Mars5微波萃取系统,对微波萃取山核桃仁油的影响因素,包括溶剂类型、提取温度、提取时间、萃取溶剂体积进行单因素的考察。实验结果表明,正己烷是萃取核桃仁油的较佳溶剂,在单因素的试验基础上通过正交实验设计得出优化的微波萃取核桃仁油的工艺条件:提取温度为60℃,提取时间为12min,每克核桃仁用萃取溶剂7mL。将萃取方法进行了比较。结果表明,微波萃取时间明显的缩短(是磁力搅拌法的1/12、索氏提取法的1/20),萃取温度也比传统方法下降5℃,微波萃取法所用溶剂体积较磁力搅拌法低,而且提油率也比传统方法高。利用气相色谱分析核桃油中的脂肪酸的组成,微波萃取法得到的核桃仁油与传统方法相比在脂肪酸组成上有了明显的变化,其中不饱和脂肪酸的质量分数由82.94%上升到90.25%,而亚油酸的质量分数由43.49%上升到48.23%。  相似文献   

12.
索氏法萃取黄瓜籽油   总被引:4,自引:1,他引:3  
以干燥黄瓜籽为原料,采用索氏溶剂萃取法提取黄瓜籽油,采用单因素试验,以黄瓜籽油的收率为评价指标,进行了索氏提取法萃取黄瓜籽油的工艺研究,考察了萃取溶剂种类、萃取温度、萃取时间和黄瓜籽质量浓度对油收率的影响。索氏提取法最优化工艺条件:萃取溶剂为正己烷,萃取温度是68.5℃,萃取时间8 h,黄瓜籽质量浓度为0.071 g/mL,油收率达40.38%。  相似文献   

13.
美伐他汀提取工艺研究   总被引:1,自引:0,他引:1  
研究从发酵液中提取美伐他汀的工艺条件。通过单因素实验确定了从美伐他汀发酵液中提取美伐他汀的最佳工艺条件。结果表明,醋酸丁酯作为提取溶剂时,其最佳工艺条件如下:提取温度为50℃,物料比(醋酸丁酯体积(mL):菌丝质量(g))为8:1,提取时间为3h,闭环温度为70℃,闭环时间为6h。本工艺简便,收率高,适用于工业化生产。  相似文献   

14.
确定了制备芝麻木脂素的最佳树脂为H1020型大孔吸附树脂,优化工艺条件为:室温,芝麻混合油中木脂素质量浓度1.54 mg/mL,吸附流速2.0 BV/h,解吸剂为体积分数为90%乙醇,解吸pH值4.2,解吸流速为1 BV/h.在此条件下,芝麻木脂素回收率大于65%,产品中木脂素总含量(以芝麻素计)达到85%.经液相色谱-质谱联用仪分析,制得木脂素的主要成分为芝麻素、芝麻林素和松醇素.  相似文献   

15.
采用单因素试验、正交试验对热水浸提法、微波法、酶法分离茯苓菌核多糖的工艺进行探讨.结果表明:热水浸提法的最佳工艺条件为:料水比1:30(g/mL),浸提温度70℃,浸提时间2 h,浸提2次;微波法最佳提取工艺条件为:料水比1:30(g/mL),功率296 W,时间4 min;酶法最佳提取工艺条件为:木瓜蛋白酶0.5%,初始pH 6,温度60℃,时间2 h.酶法的多糖提取率最高.采用集成提取工艺的茯苓多糖提取率大幅度提高,酶法与微波组合法的多糖提取率最高.考虑到多糖得率、提取时间、提取成本等因素的影响,最优的集成提取方式为酶法与微波组合法.  相似文献   

16.
微波与超声波提取绞股蓝总皂甙比较研究   总被引:2,自引:0,他引:2  
以绞股蓝全草为原料,采用微波和超声波对绞股蓝总皂甙提取进行了对比研究,两种方法分别采用单因素实验及正交试验,探讨了优化提取条件和参数.结果表明:微波提取的优化工艺参数,料液比为1g:25mL,微波处理时间为11min,微波功率为400W,总皂甙提取率为7.59%;超声波提取的优化工艺参数,料液比为1g:25mL,提取温度为70℃,超声波处理时间为20min,超声波功率为400W,总皂甙提取率为8.01%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号