首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 16 毫秒
1.
We experimentally determined colloid stability of natural colloids extracted from vadose zone sediments from the U.S. Department of Energy's Hanford Reservation. We also used reference minerals, kaolinite, montmorillonite, and silica,for comparative purposes. Colloid stability was assessed with two different methods: the batch turbidity method and dynamic light scattering. Critical coagulation concentrations (CCCs) were determined for pure Na and pure Ca electrolyte solutions, as well for mimicked Hanford vadose zone pore waters with varying sodium adsorption ratios (SARs). Critical coagulation concentrations obtained from the batch turbidity method were sensitive to initial colloid mass concentrations, settling time, and CCC criteria. The lower the initial colloid concentration and the shorter the settling times were, the larger was the CCC. The CCCs determined from the dynamic light scattering, where diluted colloidal suspensions are used, were not dependent on settling time and arbitrary CCC criteria, so dynamic light scattering is therefore the preferred method to determine colloid stability. The CCC values determined from dynamic light scattering ranged from 90 to 200 mmol/L for Na systems and 1.7 to 3.8 mmol/L for Ca systems. The stability of natural colloids was intermediate between that of pure kaolinite and montmorillonite. The results indicate that colloids in the Hanford vadose zone form stable suspensions, i.e., are in the slow aggregation regime. Nonetheless, due to the long travel times in the vadose zone, nearly all colloids will aggregate and be removed from the water column before reaching groundwater levels.  相似文献   

2.
Lysimeter and laboratory studies were conducted to identify the controlling chemical processes influencing Pu(IV) mobility through the vadose zone. A 52-L lysimeter containing sediment from the Savannah River Site, South Carolina and solid PuIV(NO3)4 was left exposed to natural wetting and drying cycles for 11 years before the lysimeter sediment was sampled. Pu had traveled 10 cm, with >95% of the Pu remaining within 1.25 cm of the source. Laboratory studies showed that the sediment quickly reduced Pu(V) to Pu(IV) (the pseudo-first-order reduction rate constant, Kobs, was 0.11 h(-1)). Of particular interest was that this same sediment could be induced to release very low concentrations of sorbed Pu under oxidizing conditions, presumably by oxidation of sorbed Pu(IV) to the more mobile Pu(V) species. Transport modeling supported the postulation that Pu oxidation occurred in the lysimeter sediment; the inclusion of an oxidation term in the model produced simulations that capture the Pu depth profile data. By not including the oxidation process in the model, Pu mobility was grossly underestimated by a factor of 3.5. It is concluded that both oxidation and reduction mechanisms can play an important role in Pu transportthrough the vadose zone and should be considered when evaluating disposal of Pu-bearing wastes.  相似文献   

3.
Contamination of vadose zone sediments under tank BX-102 at the Hanford site, Washington, resulted from the accidental release of 7-8 metric tons of uranium dissolved in caustic aqueous sludge in 1951. We have applied synchrotron-based X-ray spectroscopic and diffraction techniques to characterize the speciation of uranium in samples of these contaminated sediments. UIII-edge X-ray absorption fine structure (XAFS) spectroscopic studies demonstrate that uranium occurs predominantly as a uranium(VI) silicate from the uranophane group of minerals. XAFS cannot distinguish between the members of this mineral group due to the near identical local coordination environments of uranium in these phases. However, these phases differ crystallographically, and can be distinguished using X-ray diffraction (XRD) methods. As the concentration of uranium was too low for conventional XRD to detect these phases, X-ray microdiffraction (microXRD) was used to collect diffraction patterns on approximately 20 microm diameter areas of localized high uranium concentration found using microscanning X-ray fluorescence (microSXRF). Only sodium boltwoodite, Na(UO2)(SiO3OH) x 1.5H20, was observed; no other uranophane group minerals were present. Sodium boltwoodite formation has effectively sequestered uranium in these sediments under the current geochemical and hydrologic conditions. Attempts to remediate the uranium contamination will likely face significant difficulties because of the speciation and distribution of uranium in the sediments.  相似文献   

4.
Uranium (U) solid-state speciation in vadose zone sediments collected beneath the former North Process Pond (NPP) in the 300 Area of the Hanford site (Washington) was investigated using multi-scale techniques. In 30 day batch experiments, only a small fraction of total U (approximately 7.4%) was released to artificial groundwater solutions equilibrated with 1% pCO2. Synchrotron-based micro-X-rayfluorescence spectroscopy analyses showed that U was distributed among at least two types of species: (i) U discrete grains associated with Cu and (ii) areas with intermediate U concentrations on grains and grain coatings. Metatorbernite (Cu[UO2]2[PO4]2 x 8H2O) and uranophane (Ca[UO2]2[SiO3(OH)]2 x 5H2O) at some U discrete grains, and muscovite at U intermediate concentration areas, were identified in synchrotron-based micro-X-ray diffraction. Scanning electron microscopy/energy dispersive X-ray analyses revealed 8-10 microm size metatorbernite particles that were embedded in C-, Al-, and Si-rich coatings on quartz and albite grains. In mu- and bulk-X-ray absorption structure (mu-XAS and XAS) spectroscopy analyses, the structure of metatorbernite with additional U-C and U-U coordination environments was consistently observed at U discrete grains with high U concentrations. The consistency of the mu- and bulk-XAS analyses suggests that metatorbernite may comprise a significant fraction of the total U in the sample. The entrapped, micrometer-sized metatorbernite particles in C-, Al-, and Si-rich coatings, along with the more soluble precipitated uranyl carbonates and uranophane, likely control the long-term release of U to water associated with the vadose zone sediments.  相似文献   

5.
A column study on U(VI)-contaminated vadose zone sediments from the Hanford Site, WA, was performed to investigate U(VI) release kinetics with water advection and variable geochemical conditions. The sediments were collected from an area adjacent to and below tank BX-102 that was contaminated as a result of a radioactive tank waste overfill event. The primary reservoir for U(VI) in the sediments are micrometer-size precipitates composed of nanocrystallite aggregates of a Na-U-Silicate phase, most likely Na-boltwoodite, that nucleated and grew within microfractures of the plagioclase component of sand-sized granitic clasts. Two sediment samples, with different U(VI) concentrations and intraparticle mass transfer properties, were leached with advective flows of three different solutions. The influent solutions were all calcite-saturated and in equilibrium with atmospheric CO2. One solution was prepared from DI water, the second was a synthetic groundwater (SGW) with elevated Na that mimicked groundwater at the Hanford site, and the third was the same SGW but with both elevated Na and Si. The latter two solutions were employed, in part, to test the effect of saturation state on U(VI) release. For both sediments, and all three electrolytes, there was an initial rapid release of U(VI) to the advecting solution followed by slower near steady-state release. U(VI)aq concentrations increased during subsequent stop-flow events. The electrolytes with elevated Na and Si depressed U(VL)aq concentrations in effluent solutions. Effluent U(VI)aq concentrations for both sediments and all three electrolytes were simulated reasonably well by a three domain model (the advecting fluid, fractures, and matrix) that coupled U(VI) dissolution, intraparticle U(VI)aq diffusion, and interparticle advection, where diffusion and dissolution properties were parameterized in a previous batch study.  相似文献   

6.
The combined remediation mechanisms of volatilization and biodegradation in the vadose zone were investigated for naphthalene remediation at a creosote-contaminated site where a poplar tree-based phytoremediation system has been installed. Concurrent field and laboratory experiments were conducted to study the transport and biodegradation of naphthalene in the vadose zone. Soil gas sampling showed that more than 90% of the naphthalene vapors were biodegraded aerobically within 5-10 cm above the water table during the summer months. Peak naphthalene soil gas concentrations were observed in the late summer, corresponding with peak naphthalene aqueous concentrations and the minimum saturated zone thickness. An analytical solution was developed for vapor transport where the diffusion coefficient and first-order biodegradation rate vary vertically in two discrete zones. First-order aerobic biodegradation rates in laboratory columns using unsaturated site soil ranged from 5 to 28 days(-1) with a mean rate of 11 days(-1). The observed naphthalene mass flux at the source (3.3-22 microg cm(-2) d(-1)) was enhanced by aerobic biodegradation and was greater than the mean observed flux in the abiotic control column and the maximum theoretical mass flux by factors of 7 and 28, respectively.  相似文献   

7.
One- and two-dimensional experiments were conducted to examine differences in the behavior of gasoline and gasohol (10% ethanol by volume) as they infiltrate through the unsaturated zone and spread at the capillary fringe. Ethanol in the spilled gasohol quickly partitions into the residual water in the vadose zone and is retained there as the gasoline continues to infiltrate. Under the conditions tested, over 99% of the ethanol was initially retained in the vadose zone. Depending on the volume of gasoline spilled and the depth to the water table, this causes an increase in the aqueous-phase saturation and relative permeability, thus allowing the ethanol-laden water to drain into the gasoline pool. Under the conditions tested, the presence of ethanol does not have a significant impact on the overall size or shape of the resulting gasoline pool at the capillary fringe. Residual gasoline saturations in the vadose zone were significantly reduced however because of reduced surface and interfacial tensions associated with high ethanol concentrations. The flux of ethanol in the effluent of the column ranged from 1.4 x 10(-4) to 4.5 x 10(-7) g/(cm2 min) with the LNAPL and from 6 x 10(-3) to 3.0 x 10(-4) g/(cm2 min) after water was introduced to simulate rain infiltration. The experimental results presented here illustrate that the dynamic effects of ethanol partitioning into the aqueous phase in the vadose zone create an initial condition that is significantly different than previously understood.  相似文献   

8.
High concentrations of 2,4-dinitrotoluene (2,4-DNT) and 2,6-dinitrotoluene (2,6-DNT) are present in vadose zone soils at many facilities where explosives manufacturing has taken place. Both DNT isomers can be biodegraded under aerobic conditions, but rates of intrinsic biodegradation observed in vadose zone soils are not appreciable. Studies presented herein demonstrate that nutrient limitations control the onset of rapid 2,4-DNT biodegradation in such soils. In column studies conducted at field capacity, high levels of 2,4-DNT biodegradation were rapidly stimulated by the addition of a complete mineral medium but not by bicarbonate-buffered distilled deionized water or by phosphate-amended tap water. Biodegradation of 2,6-DNT was not observed under any conditions. Microcosm studies using a DNT-degrading culture from column effluent suggest that, after the onset of 2,4-DNT degradation, nitrite evolution will eventually control the extent of degradation achieved by two mechanisms. First, high levels of nitrite (40 mM) were found to strongly inhibit 2,4-DNT degradation. Second, nitrite production reduces the solution pH, and at pH levels below 6.0, 2,4-DNT degradation slows rapidly. Under conditions evaluated in laboratory-scale studies, 2,4-DNT biodegradation enhanced the rate of contaminant loss from the vadose zone by a factor of 10 when compared to the washout due to leaching.  相似文献   

9.
Contamination in deep vadose zone environments is isolated from exposure so direct contact is not a factor in its risk to human health and the environment. Instead, movement of contamination to the groundwater creates the potential for exposure and risk to receptors. Limiting flux from contaminated vadose zone is key for protection of groundwater resources, thus the deep vadose zone is not necessarily considered a resource requiring restoration. Contaminant discharge to the groundwater must be maintained low enough by natural attenuation (e.g., adsorption processes or radioactive decay) or through remedial actions (e.g., contaminant mass reduction or mobility reduction) to meet the groundwater concentration goals. This paper reviews the major processes for deep vadose zone metal and radionuclide remediation that form the practical constraints on remedial actions. Remediation of metal and radionuclide contamination in the deep vadose zone is complicated by heterogeneous contaminant distribution and the saturation-dependent preferential flow in heterogeneous sediments. Thus, efforts to remove contaminants have generally been unsuccessful although partial removal may reduce downward flux. Contaminant mobility may be reduced through abiotic and biotic reactions or through physical encapsulation. Hydraulic controls may limit aqueous transport. Delivering amendments to the contaminated zone and verifying performance are challenges for remediation.  相似文献   

10.
A controlled gasoline spill experiment was performed under outdoor conditions typical for winter in temperate regions to study the fate of methyl tert-butyl ether (MTBE), ethanol, benzene, and selected other petroleum hydrocarbons. Artificial gasoline containing MTBE and ethanol (5% w/w of each) was placed at a defined depth into a 2.3 m thick unsaturated zone of alluvial sand overlying a gravel aquifer in a lysimeter. During an initial period of 41 days without recharge, MTBE and hydrocarbon vapors migrated by vapor-phase diffusion to groundwater, while ethanol vapors were naturally attenuated. In a subsequent period of 30 days with 5-mm daily recharge, all soluble compounds including ethanol were transported to the groundwater. Ethanol disappeared concomitantly with benzene and all other petroleum hydrocarbons except isooctane from the aerobic groundwater due to biodegradation. MTBE persisted for longer than 6 months at concentrations larger than 125000 microg L(-1). No evidence for MTBE biodegradation was found, whereas > 99.6% of ethanol removal from the lysimeter was due to biodegradation. It is concluded that MTBE-free gasoline would be less harmful for groundwater resources and that ethanol is an acceptable substitute.  相似文献   

11.
Aqueous Pu concentrations and oxidation state transformations as a function of pH were quantified and compared between sorption/desorption studies and literature solubility values. When Pu(V) was added to a red subsurface sandy-clay-loam sediment collected near Aiken, South Carolina, 99% of the Pu sorbed to the sediment within 48 h. Throughout the study, > or = 94% of the Puaq remained as Pu(V), whereas < or = 6% was Pu(VI) and < or = 1% was Pu(IV). This is in stark contrast to the sorbed Pu which was almost exclusively in the +4 oxidation state. The fraction of aqueous Pu (Puaq/Pusolid) decreased by >2 orders-of-magnitude when the contact time was increased from 1- to 33-days, presumably the result of Pu(V) reduction to Pu(IV). The desorption studies were conducted with a sediment that had been in contact with Pu (originally as PuIV(NO3)4) for 24 years. At near neutral pH, a decrease of 1-pH unit resulted in almost an order-of-magnitude increase in the concentration of Puaq (7.5 x 10(-10) M at pH 7 and 3.6 x 10(-9) M at pH 6). Similar to the sorption experiment, > or = 96% of the Puaq was Pu(V/VI). The Puaq concentrations from the desorption experiment were similar to those of the Pu(V) amended sorption studies that were permitted to equilibrate for 33 days, suggesting that the latter had reached steady state. The Puaq concentrations as a function of pH followed near identical trends with literature solubility values for PuO2(am), except that the desorption values were lower by a fixed amount, suggesting either Pu sorption was occurring in this sediment system or that a more crystalline, less soluble form of Pu existed in the sediment than in the literature water-PuO2(am) system. Based on Pu sorption experiments and measured sediment surface charge properties as a function of pH, the latter explanation appears more likely. pH had a more pronounced effect on solubility and Puaq concentrations than on sediment charge density (or Puaq oxidation state distribution). Slight changes in system pH can have a large impact on Pu solubility and the tendency of Pu to sorb to sediment, thereby influencing Pu subsurface mobility.  相似文献   

12.
Pilot-scale tests for the land disposal of Se-enriched sediments from the San Luis Drain were performed in the San Joaquin Valley, California. Three test plots were instrumented and monitored on a dirt-road embankment near the sediment source area, providing an opportunity to measure Se oxidation and solubilization rates over a period of 2-3 yr. Soil, soil water, and groundwater data indicated that the amendment did not cause movement of dissolved Se below a depth of 15 cm. The low permeability of underlying sediments and the overall low Se solubility limit Se movement toward the groundwater table. Selenium remained in reduced forms and largely immobile at this site, although in-situ Se oxidation was measurable. Soluble Se concentrations increased from less than 0.5% to approximately 2.5% in the first 207 d following sediment application. Minor Se solubilization occurred after 439 and 704 d. Changes in Se fractionation measured using sequential extractions and Se speciation based on X-ray spectroscopy (XANES) results were in qualitative agreement. XANES results indicated initially rapid oxidation of organo-Se and/or elemental Se to selenite during the first 207 d, followed by minor oxidation after 439 d. Further solubilization of the Se inventory is anticipated, but at a low rate of 1-2% per year, comparable to rates measured in other studies.  相似文献   

13.
A series of gas (vapor)-advecting water-unsaturated column experiments using a low organic content (f(oc)) silica sand was conducted to determine mass distributions of chlorinated-volatile hydrophobic organic compounds (C-VHOCs) in a natural sorbent system. C-VHOCs used were trichloroethene (TCE), tetrachloroethene (PCE), chlorobenzene (CB), and 1,3-dichlorobenzene (DCB). Four volumetric water contents (theta(w) = 0.07, 0.12, 0.17, 0.20) and several influent gas-phase C-VHOC (solute) concentrations were considered. The method of temporal first moments was applied to complete breakthrough curve data to determine total C-VHOC gas-phase retardation and associated gas-phase C-VHOC mass fraction. Results were compared to an equilibrium partitioning advective-dispersive formulation of total gas-phase retardation. Literature-derived values of Henry's law constants and independent measurements of gas/water interface areal extent and interface phase adsorption allowed quantification of C-VHOC mass fractions in the aqueous and gas/water interface phases. Unaccounted C-VHOC mass, derived from comparison of measured C-VHOC retardation to independent phase prediction, was attributed to solid-phase sorption. Results indicate that for all conditions tested, gas/water interfacial adsorption exhibited only a small effect on C-VHOC vapor retardation (accounting for < or = 10% of the total C-VHOC distributions). Solid-phase association was the dominant uptake mechanism, accounting for 46-91% of the total C-VHOC mass in the porous system. Evaluation of the solid-phase C-VHOC uptake results in terms of a modified form of the Dubinin-Radushkevich (DR) isotherm equation provided strong evidence supporting the mechanism of pore-filling in this natural, low f(oc) sorbent.  相似文献   

14.
Local emissions of SF6 are of interest for studying their impact on the use of SF6 as a groundwater-dating tool near source regions as well as for investigating the spatial distributions of (inert) gaseous compounds spreading from urban or industrial centers. A precondition for the use of SF6 in such studies is the capability to document the temporal and spatial evolution of SF6 in and around source regions with sufficient resolution. Here we present a time series of SF6 measurements in soil air at a site (Sparkill, NY) about 25 km north of New York City carried out between May 2000 and January 2002. The data show that, below about 2 m depth, the vadose zone integrates atmospheric SF6 mixing ratios over time scales greater than 1 month. SF6 mixing ratios in soil air at these depths match averaged high-resolution atmospheric measurements performed at Lamont-Doherty Earth Observatory in Palisades, NY, located about 3 km south of Sparkill. To a first-order approximation, a simple one-dimensional diffusion model reproduces the measured SF6 profiles in the vadose zone, suggesting that the soil indeed acts as a low-pass filter for inert atmospheric gases. These findings indicate that measurements of soil air can be used to determine the spatial pattern of SF6 excess relative to the remote atmosphere for a given region. A transect of soil profiles from Manhattan to the tip of Long Island indicates that emissions from sites close to New York City lead to significant SF6 excesses (ca. 25% or more) above the clean air mixing ratios over distances of the order of 80 km.  相似文献   

15.
The vertical profiles of (239+240)Pu and (137)Cs activities and (240)Pu/(239)Pu isotopic ratios are determined for three sediment cores of Lake Qinghai from the Qinghai-Tibetan Plateau, China, and compared with those in sediments of another three lakes (Lakes Bosten, Sugan, and Shuangta), the only existing ones closest to Lop Nor area, China's nuclear weapons test site in the northwestern part of the country. The mean inventory of 47.7 ± 18.7 MBq km(-2) for (239+240)Pu activity in Lake Qinghai is comparable to the average value of global fallout expected at the same latitude, yet the mean inventory of 1112.0 ± 78.0 MBq km(-2) for (137)Cs is slightly lower than that of global fallout. Anomalously low (240)Pu/(239)Pu isotopic ratios (0.038-0.125) were found in the 3-6.5 cm deep sediment layers, indicating the trace Pu input from early nuclear weapons research activities at Atomic City in the lake's watershed during the 1950-60s. Model calculation indicated that the Pu input accounted for approximately 5-16% of the total Pu inventory. The observation of low (240)Pu/(239)Pu ratio in the deep sediment layer provided a new time marker for recent sediment dating in the lake and around the area. The results are of great significance to the further understanding of sources, records, and environmental impacts of global and regional nuclear activities in the environment and provide important chronological information for further studies on the water eutrophication process and climatic change, and reconstruction of pollution history of organic contaminants and heavy metals in the watershed of Lake Qinghai.  相似文献   

16.
Although polychlorinated dibenzo-p-dioxins and dibezofurans (PCDD/Fs) are considered recalcitrant toward biotic and abiotic degradation processes, laboratory studies indicated lateral dechlorination pathways (removal of 2,3,7,8-substituted chlorines) as possible natural remediation strategies under highly reducing conditions prevailing in contaminated sediments. Previous principal component analysis (PCA) of PCDD/Fs in Japanese sediments left unidentified a factor characterized by penta- to octa- homologues fully chlorinated at 1,2,6,9-positions (1,2,6,9-pattern). In the present study, we reexamined PCDD/Fs in sediment cores from urban (Tokyo Bay) and remote (Lake Shinji) areas of Japan using positive matrix factorization (PMF) and revealed a lateral dechlorination fingerprint exhibiting the 1,2,6,9-pattern. Relative molar concentrations of putative lateral dechlorination products linearly increased with sediment depth, suggesting that decades of reaction resulted in the accumulation of hepta- and hexa- chlorinated lateral dechlorination products in the bottom sediment layers. Times required for in situ formation of dechlorination products were estimated to be at least 27.8 +/- 17.9 year(mole %)(-1) in Lake Shinji and 4.7 +/- 0.5 year(mole %)(-1) in Tokyo Bay (both for the formation of 1,2,3,4,6,7,9-HpCDD) and are significantly longer than the dechlorination pathways observed in the laboratory.  相似文献   

17.
Quantitative information on microbial processes in the field is important. Here we propose a new field method, the "gas push-pull test" (GPPT) for the in-situ quantification of microbial activities in the vadose zone. To evaluate the new method, we studied microbial methane oxidation above an anaerobic, petroleum-contaminated aquifer. A GPPT consists of the injection of a gas mixture of reactants (e.g., methane, oxygen) and nonreactive tracer gases (e.g., neon, argon) into the vadose zone and the subsequent extraction of the injection gas mixture together with soil air from the same location. Rate constants of gas conversion are calculated from breakthrough curves of extracted reactants and tracers. In agreement with expectations from previously measured gas profiles, we determined first-order rate constants of 0.68 h(-1) at 1.1 m below soil surface and 2.19 h(-1) at 2.7 m, close to the groundwater table. Co-injection of a specific inhibitor (acetylene) for methanotrophs showed that the observed methane consumption was microbially mediated. This was confirmed by increases of stable carbon isotope ratios in methane by up to 42.6 %. In the future, GPPTs should provide useful quantitative information on a range of microbial processes in the vadose zone.  相似文献   

18.
19.
Due to their redox reactivity, surface sorption characteristics, and ubiquity as corrosion products or as minerals in natural sediments, iron(II)-bearing minerals control to a large extent the environmental fate of actinides. Pu-L(III)-edge XANES and EXAFS spectra were used to investigate reaction products of aqueous (242)Pu(III) and (242)Pu(V) reacted with magnetite, mackinawite, and chukanovite under anoxic conditions. As Pu concentrations in the liquid phase were rapidly below detection limit, oxidation state and local structure of Pu were determined for Pu associated with the solid mineral phase. Pu(V) was reduced in the presence of all three minerals. A newly identified, highly specific Pu(III)-sorption complex formed with magnetite. Solid PuO(2) phases formed in the presence of mackinawite and chukanovite; in the case of chukanovite, up to one-third of plutonium was also present as Pu(III). This highlights the necessity to consider, under reducing anoxic conditions, Pu(III) species in addition to tetravalent PuO(2) for environmental risk assessment. Our results also demonstrate the necessity to support thermodynamic calculations with spectroscopic data.  相似文献   

20.
蛋白质氧化及其对机体氧化还原状态的影响   总被引:1,自引:0,他引:1  
蛋白质的氧化会造成其结构、理化性质、功能性质发生变化。食物蛋白质氧化在加工贮藏过程中普遍存在,其对机体氧化还原状态造成的影响引起越来越多的关注。本文就蛋白质的氧化机制、氧化后发生的主要转变及食物蛋白质氧化对生物体细胞、体内外消化、体内氧化还原状态的研究进行阐述,旨在进一步探究氧化蛋白质的吸收机理及其对生物体的作用和影响。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号