首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
A new application of the W-class state for quantum state sharing (QSTS) of an arbitrary three-qubit state with a certain probability is presented explicitly. We show that three sets of W-class states can be used to realize the QSTS of an arbitrary three-qubit state involving Bell-state measurement, single-qubit measurement and one high dimensional unitary operation. The performance demonstrates that our scheme can considerably reduce the difficulty of physical implementation.  相似文献   

2.
We demonstrate that a four-qubit cluster state can be used to realize the deterministic quantum state sharing (QSTS) of an arbitrary four-qubit GHZ-type state among three parties by introducing three ancillary qubits and performing three controlled-NOT operations. In our scheme, any one of the two agents has the ability to reconstruct the original state if he/she collaborates with the other one, whilst individual agent obtains no information.  相似文献   

3.
Asymmetric multi-party quantum state sharing of an arbitrary m-qubit state   总被引:1,自引:0,他引:1  
We present a scheme for asymmetric multi-party quantum state sharing of an arbitrary m-qubit state with n agents. The sender Alice first shares m − 1 Bell states and one n + 1-particle Greenberger–Horne–Zeilinger state with n agents, where the agent Bob, who is designated to recover the original m-qubit state, just keeps m particles and other agents (all controllers) n − 1 particles, that is, each controller only holds one particle in hand. Subsequently, Alice performs m Bell-basis measurements on her 2m particles and each controller only need take a single-particle measurement on his particle with the basis X. Finally, Bob can recover the original m-qubit state with the corresponding local unitary operations according to Alice and all controllers’ measurement results. Its intrinsic efficiency for qubits approaches 100%, and the total efficiency really approaches the maximal value, which is higher than those of the known symmetric schemes.  相似文献   

4.
In this paper, we present a possible improvement of the successful probability of joint remote state preparation via cluster states following some ideals from probabilistic joint remote state preparation (Wang et al. in Opt Commun, 284:5835, 2011). The success probability can be improved from $1/4$ to 1 via the same quantum entangled channel by adding some classical information and performing some unitary operations. Moreover, we also discussed the scheme for joint remote preparation via cluster-type states. Compared with other schemes, our schemes have the advantage of having high successful probability for joint preparation of an arbitrary two-qubit state via cluster states and cluster-type states.  相似文献   

5.
Motivated by some previous joint remote preparation schemes, we first propose some quantum circuits and photon circuits that two senders jointly prepare an arbitrary one-qubit state to a remote receiver via GHZ state. Then, by constructing KAK decomposition of some transformation in SO(4), one quantum circuit is constructed for jointly preparing an arbitrary two-qubit state to the remote receiver. Furthermore, some deterministic schemes of jointly preparing one-qubit and two-qubit states are presented. Besides, the proposed schemes are extended to multi-sender and the partially entangled quantum resources.  相似文献   

6.
A new application of the four-qubit cluster state is investigated for quantum information splitting (QIS) of an arbitrary three-qubit state. Muralidharan and Panigrahi (Phys Rev A 78:062333, 2008) argued that a four-qubit cluster state is impossible for QIS of an arbitrary two-qubit state. In this paper, we demonstrate that two four-qubit cluster states can be used to realize the deterministic QIS of an arbitrary three-qubit state by performing only the Bell-state measurements. Our scheme considered here is secure against certain eavesdropping attacks.  相似文献   

7.
By using the \(\chi \) -type entangled states, a novel scheme for multi-party quantum state sharing (MQSTS) of an arbitrary multi-qubit state is investigated. It is shown that the MQSTS scheme can be faithfully realized by performing appropriate Bell state measurements, Z basis measurements and local unitary operations, rather than multi-qubit entanglement or multi-particle joint measurements. Thus, our MQSTS scheme is more convenient in a practical application than some previous schemes. Furthermore, its intrinsic efficiency for qubits approaches 100 %, and the total efficiency really approaches the maximal value, which is higher than those of the previous MQSTS schemes. Finally, we analyze the security from the views of participant attack and outside attack in detail.  相似文献   

8.
融合了分层量子态分享及多参数测量思想,提出了一个研究不同最大纠缠量子信道的分层量子态分享可能性的新框架,并以4-粒子团簇态作为量子信道为例说明了该框架是可行的,指出该例是现有协议的推广。考虑到最大纠缠态的保持对现有技术的挑战,将上述框架推广到非最大纠缠信道的情形,且以4-粒子非最大纠缠团簇态为例,验证了这个推广框架用于研究不同非最大纠缠信道的分层量子态分享是可行的。进一步,分析了验证实例的成功概率(经典耗费)与测量参数或量子纠缠参数间的依赖关系,说明了可以根据量子信道的参数来调整测量基的参数,达到调节成功概率或经典耗费,满足真实世界中不同需求之目的。  相似文献   

9.
The utility of a five-qubit entangled state for quantum teleportation, quantum state sharing and superdense coding is investigated. The state can be utilized for perfect teleportation and quantum state sharing of an arbitrary single- and two-qubit state. The capacity of superdense coding of the state reaches the “Holevo bound”, which means that five classical bits can be transmitted by sending three qubits. The preparation of the five-qubit state and detection of the multipartite states in cavity QED are discussed. The distinct advantage of the feasible cavity QED technology that we use is insensitive to the thermal field and the cavity decay.  相似文献   

10.
针对量子秘密共享的量子态局限于最大纠缠态的问题,提出一种实现任意N位量子态的秘密共享方案。该方案使用纠缠态作为量子信道,首先发送方对粒子进行Bell基测量,然后接收方Bob或Charlie使用单粒子测量,最后参与者根据Alice和单粒子测量得到的结果,选用合适的联合幺正变换对量子态进行相应的变换,这样可以实现任意N粒子量子态的秘密共享。该方案能够抵御外部窃听者和内部不诚实参与者的攻击,安全性分析表明此方案是安全的。  相似文献   

11.
We propose two deterministic remote state preparation (DRSP) schemes by using the Brown state as the entangled channel. Firstly, the remote preparation of an arbitrary two-qubit state is considered. It is worth mentioning that the construction of measurement bases plays a key role in our scheme. Then, the remote preparation of an arbitrary three-qubit state is investigated. The proposed schemes can be extended to controlled remote state preparation (CRSP) with unit success probabilities. At variance with the existing CRSP schemes via the Brown state, the derived schemes have no restriction on the coefficients, while the success probabilities can reach 100%. It means the success probabilities are greatly improved. Moreover, we pay attention to the DRSP in noisy environments under two important decoherence models, the amplitude-damping noise and phase-damping noise.  相似文献   

12.
We propose a novel scheme for remote preparation of an arbitrary n-qubit state with the aid of an appropriate local \(2^n\times 2^n\) unitary operation and n maximally entangled two-qubit states. The analytical expression of local unitary operation, which is constructed in the form of iterative process, is presented for the preparation of n-qubit state in detail. We obtain the total successful probabilities of the scheme in the general and special cases, respectively. The feasibility of our scheme in preparing remotely multi-qubit states is explicitly demonstrated by theoretical studies and concrete examples, and our results show that the novel proposal could enlarge the applied range of remote state preparation.  相似文献   

13.
We present a new scheme for sharing an arbitrary two-qubit quantum state with n agents. In our scheme, the sender Alice first shares n Einsein-Podolsky-Rosen (EPR) pairs in Bell states with n agents. After setting up the secure quantum channel, Alice first applies (n − 2) Controlled-Not (CNOT) gate operations, and then performs two Bell-state measurements and (n − 2) single-particle measurements (n >2). In addition, all controllers only hold one particle in their hands, respectively, and thus they only need to perform a single-particle measurement on the respective particle with the basis {|0?, |1?}{\{{\vert}0\rangle, {\vert}1\rangle\}}. Compared with other schemes with Bell states, our scheme needs less qubits as the quantum resources and exchanges less classical information, and thus obtains higher total efficiency.  相似文献   

14.
Controlled teleportation   总被引:1,自引:0,他引:1  
In this article, we review the recent development of controlled teleportation which can be used for sharing quantum information and has important applications in remote quantum computation. We introduce the principles of a couple of controlled teleportation schemes with maximally entangled quantum channels and those with pure entangled quantum channels (non-maximally entangled states). The schemes based on maximally entangled states have the advantage of having maximal efficiency although there are differences in their implementations in experiment. In the controlled teleportation schemes using non-maximally entangled states as the quantum channels, the receiver can reconstruct the originally unknown state by adding an auxiliary particle and performing a unitary evolution. No matter what the unknown state is (a single qubit state or an m-qudit state), the auxiliary particle required is only a two-level quantum system.  相似文献   

15.
A novel scheme for quantum communication having substantial applications in practical life is designed and analyzed. Specifically, we have proposed a hierarchical counterpart of the joint remote state preparation (JRSP) protocol, where two senders can jointly and remotely prepare a quantum state. One sender has the information regarding amplitude, while the other one has the phase information of a quantum state to be jointly prepared at the receiver’s port. However, there exists a hierarchy among the receivers, as far as powers to reconstruct the quantum state are concerned. A 5-qubit cluster state has been used here to perform the task. Further, it is established that the proposed scheme for hierarchical JRSP (HJRSP) is of enormous practical importance in critical situations involving defense and other sectors, where it is essential to ensure that an important decision/order that can severely affect a society or an organization is not taken by a single person, and once the order is issued, all the receivers do not possess an equal right to implement it. Further, the effect of different noise models (e.g., amplitude damping (AD), phase damping (PD), collective noise and Pauli noise models) on the HJRSP protocol proposed here is investigated. It is found that in AD and PD noise models a higher-power agent can reconstruct the quantum state to be remotely prepared with higher fidelity than that done by the lower-power agent(s). In contrast, the opposite may happen in the presence of collective noise models. We have also proposed a scheme for probabilistic HJRSP using a non-maximally entangled 5-qubit cluster state.  相似文献   

16.
We propose a new scheme for efficient remote preparation of an arbitrary two-qubit state, introducing two auxiliary qubits and using two Einstein–Podolsky–Rosen (EPR) states as the quantum channel in a non-recursive way. At variance with all existing schemes, our scheme accomplishes deterministic remote state preparation (RSP) with only one sender and the simplest entangled resource (say, EPR pairs). We construct the corresponding quantum logic circuit using a unitary matrix decomposition procedure and analytically obtain the average fidelity of the deterministic RSP process for dissipative environments. Our studies show that, while the average fidelity gradually decreases to a stable value without any revival in the Markovian regime, it decreases to the same stable value with a dampened revival amplitude in the non-Markovian regime. We also find that the average fidelity’s approximate maximal value can be preserved for a long time if the non-Markovian and the detuning conditions are satisfied simultaneously.  相似文献   

17.
We present a new scheme to share an arbitrary multi-qubit state between n agents via various probabilistic channels under cooperation of m?1 controllers with a certain probability. Compared with existing ones in this literature, our scheme involves various probabilistic channels, which weakens the requirement for quantum channels. The proposed scheme is symmetric which means even though the designed receiver has no capability of adopting appropriate strategies in introducing auxiliary qubits and performing two-qubit gates, it is still possible to faithfully share a multi-qubit state with assistance of other participants. This scheme involves only single-qubit measurements, CNOT gates, and local two-qubit gates with an auxiliary qubit, which makes it more convenient for physical realization.  相似文献   

18.
In this paper, two theoretical schemes of the arbitrary single-qubit states via four-qubit cluster state are proposed. One is three-party quantum broadcast scheme, which realizes the broadcast among three participants. The other is multi-output quantum teleportation. Both allow two distant receivers to simultaneously and deterministically obtain the arbitrary single-qubit states, respectively. Compared with former schemes of an arbitrary single-qubit state, the proposed schemes realize quantum multi-cast communication efficiently, which enables Bob and Charlie to obtain the states simultaneously in the case of just knowing Alice’s measurement results. The proposed schemes play an important role in quantum information, specially in secret sharing and quantum teleportation.  相似文献   

19.
彭家寅 《计算机应用研究》2020,37(12):3731-3735
为了解决任意二量子通信问题,首先给出了五粒子和七粒子纠缠态的构造方法,并提供了它们的量子线路图。其次,以该五粒子纠缠态为量子信道,提出一个任意二粒子未知量子态的受控隐形传态协议。该协议在监察者Charlie的控制下,Alice进行四粒子投影测量和经典通信,Bob采用简单酉变换就能以100%的概率成功重构一个任意二粒子纠缠态。最后,利用七粒子纠缠态为量子信道,提出了任意二粒子纠缠态的联合受控远程制备方案。在此方案中,发送者Alice用自己掌握被制备态的部分信息构造测量基,发送者Bob采用前馈测量策略,接收者Diana在监控者Charlie的帮助下,通过简单幺正变换就能确定性地恢复原始态。  相似文献   

20.
In this article, we review the recent development of controlled teleportation which can be used for sharing quantum information and has important applications in remote quantum computation. We introduce the principles of a couple of controlled teleportation schemes with maximally entangled quantum channels and those with pure entangled quantum channels (non-maximally entangled states). The schemes based on maximally entangled states have the advantage of having maximal efficiency although there are differences in their implementations in experiment. In the controlled teleportation schemes using non-maximally entangled states as the quantum channels, the receiver can reconstruct the originally unknown state by adding an auxiliary particle and performing a unitary evolution. No matter what the unknown state is (a single qubit state or an m-qudit state), the auxiliary particle required is only a two-level quantum system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号