首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Perturbation of astrocyte functions by HIV-1 infection may contribute to the pathogenesis of AIDS dementia complex (ADC). The present study investigated the possibility that astroglial transport of glutamate and aspartate, the major excitatory amino acids (EAAs) in the mammalian central nervous system (CNS), is altered by HIV-1 infection. Human U251 glioma cells were infected with the brain isolate SF162 of HIV-1. HIV-1 persisted in glial cells over several months. This nonproductive infection of glial cells was characterized by persistent expression of Nef over the time of the infection, and the transient presence of structural viral proteins, including the viral transmembrane glycoprotein gp41, which was detected during the initial 2 weeks following HIV-1 infection. The presence of gp41 in acutely HIV-1-infected glial cells coincided with a 36% decrease in D-[3H]aspartate uptake, owing to a reduction in the maximal transport capacity (vmax) for D-aspartate. The expression of typical astrocytic glutamate transporters EAAT1 and EAAT2 in U251 glioma cells was not altered by HIV-1 infection. To determine whether viral protein gp120, gp41, or Nef was involved in the impairment of EAA transport in acutely HIV-1-infected glial cells, effects of lentiviral lytic peptide type 1 (LLP-1) (corresponding to the carboxy terminus of gp41), recombinant SF2 gp120, and recombinant LAI Nef on D-[3H]aspartate uptake and the release of glutamate in glial cells were investigated. Only LLP-1 reduced D-[3H]aspartate uptake and facilitated the release of glutamate from glial cells in a concentration-dependent manner. These results suggest that the carboxy terminus of gp41 impairs EAA transport in glial cells, which may contribute to excitotoxic damage to neurons in HIV-1 infection of the CNS.  相似文献   

2.
Increased Na+/H+ antiport activity has been implicated in the pathogenesis of hypertension and vascular disease in diabetes mellitus. The independent effect of elevated extracellular glucose concentrations on Na+/H+ antiport activity in cultured rat vascular smooth muscle cells (VSMC) was thus examined. Amiloride-sensitive 22Na+ uptake by VSMC significantly increased twofold after 3 and 24 h of exposure to high glucose medium (20 mM) vs. control medium (5 mM). Direct glucose-induced Na+/H+ antiport activation was confirmed by measuring Na(+)-dependent intracellular pH recovery from intracellular acidosis. High glucose significantly increased protein kinase C (PKC) activity in VSMC and inhibition of PKC activation with H-7, staurosporine, or prior PKC downregulation prevented glucose-induced increases in Na+/H+ antiport activity in VSMC. Northern analysis of VSMC poly A+ RNA revealed that high glucose induced a threefold increase in Na+/H+ antiport (NHE-1) mRNA at 24 h. Inhibiting this increase in NHE-1 mRNA with actinomycin D prevented the sustained glucose-induced increase in Na+/H+ antiport activity. In conclusion, elevated glucose concentrations significantly influence vascular Na+/H+ antiport activity via glucose-induced PKC dependent mechanisms, thereby providing a biochemical basis for increased Na+/H+ antiport activity in the vascular tissues of patients with hypertension and diabetes mellitus.  相似文献   

3.
Monoclonal antibodies that bound to HIV gp41 and cross-reacted with astrocytes were recovered from the blood of three patients infected with HIV-1. Mapping of the specificity of these monoclonal antibodies, using synthetic gp41 peptides, located their epitope to amino acids 644-663 and established their conformation dependence. Six other human monoclonal anti-HIV antibodies were found to bind to HIV gp41 or gp120 but not to reactive astrocytes in brain tissue. Sharing of linear or conformational protein determinants between disparate viral and host proteins is termed molecular mimicry. The consequences of such mimicry by anti-viral antibodies interacting with astrocytes may play a role in the dementia of AIDS patients since a major function of astrocytes is to maintain the appropriate milieu for neuronal function. The finding of such cross-reactive antibodies adds to the evidence for a possible autoimmune pathogenesis in some of the disease manifestations accompanying HIV infection.  相似文献   

4.
The human immunodeficiency virus HIV-1 establishes persistent infections in humans which lead to acquired immunodeficiency syndrome (AIDS). The HIV-1 envelope glycoproteins, gp120 and gp41, are assembled into a trimeric complex that mediates virus entry into target cells. HIV-1 entry depends on the sequential interaction of the gp120 exterior envelope glycoprotein with the receptors on the cell, CD4 and members of the chemokine receptor family. The gp120 glycoprotein, which can be shed from the envelope complex, elicits both virus-neutralizing and non-neutralizing antibodies during natural infection. Antibodies that lack neutralizing activity are often directed against the gp120 regions that are occluded on the assembled trimer and which are exposed only upon shedding. Neutralizing antibodies, by contrast, must access the functional envelope glycoprotein complex and typically recognize conserved or variable epitopes near the receptor-binding regions. Here we describe the spatial organization of conserved neutralization epitopes on gp120, using epitope maps in conjunction with the X-ray crystal structure of a ternary complex that includes a gp120 core, CD4 and a neutralizing antibody. A large fraction of the predicted accessible surface of gp120 in the trimer is composed of variable, heavily glycosylated core and loop structures that surround the receptor-binding regions. Understanding the structural basis for the ability of HIV-1 to evade the humoral immune response should assist in the design of a vaccine.  相似文献   

5.
The human immunodeficiency virus type-1 envelope glycoprotein gp120 is shed from the virus and from infected cells and thus can diffuse and interact with a variety of central nervous system cells. Transgenic mice constitutively expressing glial fibrillary acidic protein-driven gp120 from brain astrocytes display neuronal and glial changes resembling abnormalities in human immunodeficiency virus type-1-infected human brains. To assess the neurophysiology of these transgenic mice and determine whether gp120 expression impairs synaptic plasticity, we examined CA1 population excitatory postsynaptic potentials in hippocampal slices from transgenic mice and from non-transgenic controls, using a double-blind protocol. Compared with slices from non-transgenic littermate controls, slices from gp120 transgenic mice showed four significant alterations: (i) increased mean slopes of normalized population excitatory postsynaptic potentials; (ii) larger paired-pulse facilitation after induction of long-term potentiation at 50 ms interpulse intervals; (iii) markedly elevated short-term potentiation after 10 and 20 shocks at 100 Hz; and (iv) a significant reduction in the magnitude of CA1 long-term potentiation. In slices from transgenic mice expressing Escherichia coli beta-galactosidase from the same promoter, paired-pulse facilitation and long-term potentiation were normal. These results indicate that brain slice preparations from gp120 transgenic mice can be used to assess pathophysiological effects of gp120 on neuronal networks. Because short-term potentiation involves presynaptic mechanisms, our results suggest that gp120 expression in these mice enhances either presynaptic glutamate release or postsynaptic glutamate receptor function, or both. These changes could lead to increased Ca2+ influx, thereby contributing to neuronal dysfunction and injury. As long-term potentiation is a cellular model of learning and memory, our results may be relevant to memory (cognitive) impairments seen in patients with AIDS.  相似文献   

6.
The envelope glycoprotein gp120 of the human immunodeficiency virus HIV-1 has been proposed to cause neuron death in developing murine hippocampal cultures and rat retinal ganglion cells. In the present study, cultured human embryonic cerebral and spinal neurons from 8- to 10-week-old embryos were used to study the neurotoxic effect of gp120 and gp160. Electrophysiological properties as well as N-methyl-D-aspartate (NMDA)-induced current were recorded from neurons maintained in culture for 10-30 days. Neither voltage-activated sodium or calcium currents nor NMDA-induced currents were affected by exposure of neurons to 250 pM gp120 or gp160. In contrast, when neurons were subjected to photometric measurements using the calcium dye indo-1 to monitor the intracellular free Ca2+ concentration ([Ca2+])i, gp120 and gp160 (20-250 pM) potentiated the large rises in [Ca2+]i induced by 50 microM NMDA. The potentiation of NMDA-induced Ca2+ responses required the presence of Ca2+ in the medium, and was abolished by the NMDA antagonist D-2-amino-5-phosphonovalerate (AP5) and the voltage-gated Ca2+ channel inhibitor nifedipine. Moreover, exposure of a subpopulation of spinal neurons (25% of the cells tested) to 20-250 pM gp120 or gp160 resulted in an increase in [Ca2+]i that followed three patterns: fluctuations not affected by AP5, a single peak, and the progressive and irreversible rise of [Ca2+]i. The neurotoxicity of picomolar doses of gp120 and gp160 cultures was estimated by immunofluorescence and colorimetric assay. Treatment of cultures with AP5 or nifedipine reduced gp120-induced toxicity by 70 and  相似文献   

7.
In goldfish, gonadotropin (GTH-II) responses to the two endogenous GnRHs, salmon-GnRH and chicken-GnRH-II, are mediated by activation of protein kinase C (PKC) and voltage-sensitive Ca2+ channels. In this study, we investigated the role of extracellular Na+, voltage-dependent Na+ channels, and the plasma membrane Na+/H+ exchanger in mediating GnRH-stimulated GTH-II release from dispersed goldfish pituitary cells. Perifusion with Na+-depleted medium reduced the GTH-II response to both GnRHs and the response to the protein kinase C activator, phorbol 12-myristate 13-acetate. Conversely, increasing Na+ influx with veratridine (100 microM) stimulated GTH-II release in the presence and in the absence of extracellular Ca2+. However, the voltage-sensitive Na+ channel blocker, tetrodotoxin (1 microM), did not affect GnRH- stimulated GTH-II release, and the GnRHs did not affect voltage-sensitive Na+ currents. In contrast, the Na+/H+ antiport inhibitors, amiloride or its analog, DMA, reduced GTH-II responses to the GnRHs and phorbol 12-myristate 13-acetate. The Na+/H+ antiport inhibitors did not affect voltage-sensitive Ca2+ or Na+ currents or the GTH-II release response to the Ca2+ ionophore, ionomycin. These findings indicate that extracellular Na+ and the Na+/H+ exchanger are involved in the mediation of GnRH-stimulated GTH-II release. In addition, Na+ entry may modulate GTH-II release independent of extracellular Ca2+.  相似文献   

8.
Parallel arrays of Na+/H+ and Cl-/HCO3- antiporters are believed to catalyze the first step of transepithelial electrolyte secretion in lacrimal glands by coupling Na+ and Cl- influxes across acinar cell basolateral membranes. Tracer uptake methods were used to confirm the presence of Na+/H+ antiport activity in membrane vesicles isolated from rabbit lacrimal gland fragments. Outwardly-directed H+ gradients accelerated 22Na+ uptake, and amiloride inhibited 96% of the H+ gradient-dependent 22Na+ flux. Amiloride-sensitive 22Na+ influx was half-maximal at an extravesicular Na+ concentration of 14 mM. In vitro stimulation of isolated lacrimal acini with 10 microM carbachol for 30 min increased Na+/H+ antiport activity of a subsequently isolated basolateral membrane sample 2.5-fold, but it did not significantly affect Na+/H+ antiport activity measured in intracellular membrane samples. The same treatment increased basolateral membrane Na+,K(+)-ATPase activity 1.4-fold; this increase could be accounted for by decreases in the Na+,K(+)-ATPase activities of intracellular membranes. Thus, it appears that cholinergic stimulation causes recruitment of additional Na+,K(+)-ATPase pump units to the acinar cell basolateral plasma membrane. The mechanistic basis of the increase in basolateral membrane Na+/H+ antiport activity remains unclear.  相似文献   

9.
The extracellular pH (pHe) in solid tumours is frequently lower than the pHe in normal tissues. Cells within an acidic environment depend on mechanisms which regulate intracellular pH (pHi) for their survival, including the Na+/H+ antiport which exports protons in exchange for Na+ ions. Amiloride and its analogues DMA (5-(N,N-dimethyl)amiloride), MIBA (5-(N-methyl-N-isobutyl)amiloride) and EIPA (5-(N-ethyl-N-isopropyl)amiloride) are known to inhibit the Na+/H+ antiport and therefore decrease the cells ability to regulate pHi. All three analogues were found to be potent inhibitors of the antiport in human MGH-U1 and murine EMT-6 cells, with DMA being approximately 20, MIBA 100 and EIPA 200-fold as potent as amiloride; EIPA also gave more complete suppression of the Na+/H+ antiport. These agents were not toxic to cells when used alone; however, in combination with nigericin, an agent which acidifies cells, all three analogues were toxic to cells at pHe < 7.0, and markedly enhanced the toxicity of nigericin alone. Cell killing was greatest for nigericin used with EIPA or MIBA. None of the agents were toxic to cells at pHe 7.0 or above. When used against variant cells lacking the Na+/H+ antiport (PS-120 cells) EIPA did not enhance the cytotoxicity of nigericin alone, suggesting that the observed effect was due to inhibition of Na+/H+ exchange, rather than due to non-specific effects. The combination of EIPA and nigericin gave similar cell killing in previously dissociated and intact MGH-U1 spheroids, suggesting that the agents have good penetration of solid tissue. Preliminary experiments using EMT-6 tumours in mice suggested that EIPA and nigericin were able to enhance the toxicity of radiation in vivo, presumably through selective effects against the hypoxic (and probably acidic) subpopulation of cells that is resistant to radiation.  相似文献   

10.
T Zhu  H Mo  N Wang  DS Nam  Y Cao  RA Koup  DD Ho 《Canadian Metallurgical Quarterly》1993,261(5125):1179-1181
Better characterization of human immunodeficiency virus-type 1 (HIV-1) in patients with primary infection has important implications for the development of an acquired immunodeficiency syndrome (AIDS) vaccine because vaccine strategies should target viral isolates with the properties of transmitted viruses. In five HIV-1 seroconverters, the viral phenotype was found to be uniformly macrophage-tropic and non-syncytium-inducing. Furthermore, the viruses were genotypically homogeneous within each patient, but a common signature sequence was not discernible among transmitted viruses. In the two cases where the sexual partners were also studied, the sequences of the transmitted viruses matched best with minor variants in the blood of the transmitters. There was also a stronger pressure to conserve sequences in gp120 than in gp41, nef, and p17, suggesting that a selective mechanism is involved in transmission.  相似文献   

11.
Human immunodeficiency virus type 1 (HIV-1) entry into target cells involves sequential binding of the gp120 exterior envelope glycoprotein to CD4 and to specific chemokine receptors. Soluble CD4 (sCD4) is thought to mimic membrane-anchored CD4, and its binding alters the conformation of the HIV-1 envelope glycoproteins. Two cross-competing monoclonal antibodies, 17b and CG10, that recognize CD4-inducible gp120 epitopes and that block gp120-chemokine receptor binding were used to investigate the nature and functional significance of gp120 conformational changes initiated by CD4 binding. Envelope glycoproteins derived from both T-cell line-adapted and primary HIV-1 isolates exhibited increased binding of the 17b antibody in the presence of sCD4. CD4-induced exposure of the 17b epitope on the oligomeric envelope glycoprotein complex occurred over a wide range of temperatures and involved movement of the gp120 V1/V2 variable loops. Amino acid changes that reduced the efficiency of 17b epitope exposure following CD4 binding invariably compromised the ability of the HIV-1 envelope glycoproteins to form syncytia or to support virus entry. Comparison of the CD4 dependence and neutralization efficiencies of the 17b and CG10 antibodies suggested that the epitopes for these antibodies are minimally accessible following attachment of gp120 to cell surface CD4. These results underscore the functional importance of these CD4-induced changes in gp120 conformation and illustrate viral strategies for sequestering chemokine receptor-binding regions from the humoral immune response.  相似文献   

12.
In this study, we demonstrate that the glycoprotein CD4, a member of the immunoglobulin superfamily, is a critical component of the receptor for human herpesvirus 7 (HHV-7), a recently discovered T-lymphotropic human herpesvirus. A selective and progressive downregulation of the surface membrane expression of CD4 was observed in human CD4+ T cells in the course of HHV-7 infection. Various murine monoclonal antibodies to CD4 and the recombinant soluble form of human CD4 caused a dose-dependent inhibition of HHV-7 infection in primary CD4+ T lymphocytes. Moreover, radiolabeled HHV-7 specifically bound to cervical carcinoma cells (HeLa) expressing human CD4. A marked carcinoma cells (HeLa) expressing human CD4. A marked reciprocal interference was observed between HHV-7 and human immunodeficiency virus (HIV), the retrovirus that causes the acquired immunodeficiency syndrome and also uses CD4 as a receptor. Previous exposure of CD4+ T cells to HHV-7 dramatically interfered with infection by both primary and in vitro-passaged HIV-1 isolates. Reciprocally, persistent infection with HIV-1 or treatment with the soluble form of gp120, the CD4-binding envelope glycoprotein of HIV-1, rendered CD4+ T cells resistant to HHV-7 infection. These data indicate that CD4 is critically involved in the receptor mechanism for HHV-7. The antagonistic effect between HHV-7 and HIV could be exploited to devise therapeutic approaches to AIDS.  相似文献   

13.
The envelope glycoprotein of the human immunodeficiency virus (HIV-1), gp120, has recently been characterized as a novel immunoglobulin superantigen (Ig-SAg) [1,2]. Analogous to the interaction of SAgs with T cells, gp120 binds to an unusually large proportion of immunoglobulins (lgs) from HIV-uninfected individuals; most, if not all of these Igs are members of the VH3 family [3]. Functionally, gp120 preferentially stimulates VH3 B cells in vitro. This stimulation correlates with an in vivo VH3 activation during HIV infection. Curiously, this initial activation is followed by a subsequent depletion of VH3-expressing B cells as individuals progress to AIDS. In this article we will review our current understanding of the superantigenic properties of HIV gp120. Specifically we will focus on structural aspects of the binding interaction. on the ontological development of these superantigen-binding antibodies, and on potential roles that this unconventional Ig-pathogen interaction might play in the pathogenesis of HIV-induced disease.  相似文献   

14.
Interleukin-1 (IL-1) is elevated in brain tissue of individuals who died with acquired immunodeficiency syndrome (AIDS) and other diseases where this cytokine likely stimulates reactive astrocytosis. IL-1 stimulates, among others, production of interleukin-6 (IL-6), granulocyte macrophage colony-stimulating factor (GM-CSF), and tumor necrosis factor-alpha (TNF-alpha) in cultured astrocytes and astrocytoma cell lines. These and other cytokines may contribute to the neuropathogenesis after infection by human immunodeficiency virus type-1 (HIV-1). For example, concentration of TNF-alpha is increased in brain tissue of individuals who died with AIDS and correlates with the severity of AIDS Dementia Complex (ADC). TNF-alpha and IL-6 have been immunocytochemically detected in brain tissue but they have not been localized to astrocytes. We, therefore, examined the expression of IL-6, GM-CSF, and TNF-alpha in human primary astrocytes and astrocytoma cell lines U251 and 253 exposed to IL-1 in serum-free medium. In addition, we immunocytochemically assayed GM-CSF expression by astrocytes in brain tissue (n = 8). The three cytokines were differentially induced in cultured astrocytes by IL-1. The astrocytoma cell lines recapitulated cytokine-specific patterns of expression in astrocytes. The patterns were characterized by amounts produced, compartmentalization (intra- and/or extracellular), time courses, and optimal doses of IL-1 for induction. GM-SCF-like immunoreactivity was detected in some but not all, GFAP+ cells. GM-CSF+/GFAP+ cells were detected in only three of seven cases containing GM-CSF immunoreactivity. Thus, a discrepancy may exist between human astrocytic cytokine expression in vitro and in tissue. Novel methods therefore may need to be developed to recapitulate in vitro the heterogeneity of astrocytic cytokine expression in AIDS and other brain tissue.  相似文献   

15.
Current clinical gene therapy protocols for the treatment of human immunodeficiency virus type 1 (HIV-1) infection often involve the ex vivo transduction and expansion of CD4+ T cells derived from HIV-positive patients at a late stage in their disease (CD4 count <400). These protocols involve the transduction of T cells by murine leukemia virus (MLV)-based vectors encoding antiviral constructs such as the rev m10 dominant negative mutant or a ribozyme directed against the CAP site of HIV-1 RNA. We examined the efficiency and stability of transduction of CD4+ T cells derived from HIV-infected patients at different stages in the progression of their disease, from seroconversion to AIDS. CD4+ T cells from HIV-positive patients and uninfected donors were transduced with MLV-based vectors encoding beta-galactosidase and an intracellular antibody directed against gp120 (sFv 105) or Tat. (sFvtat1-Ckappa). The expression of marker genes and the effects of the antiviral constructs were monitored in vitro in unselected transduced CD4+ T cells. Efficiency and stability of transduction varied during the course of HIV infection; CD4+ T cells derived from asymptomatic patients were transducible at higher efficiencies and stabilities than CD4+ T cells from patients with acquired immunodeficiency syndrome (AIDS). Expression of the anti-tat intracellular antibody was more effective at stably inhibiting HIV-1 replication in transduced cells from HIV-infected individuals than was sFv 105. The results of this study have important implications for the development of a clinically relevant gene therapy for the treatment of HIV-1 infection.  相似文献   

16.
Intraerythrocytic malaria parasites produce vast amounts of lactic acid through glycolysis. While the egress of lactate is very rapid, the mode of extrusion of H+ is not known. The possible involvement of a Na+/H+ antiport in the extrusion of protons across the plasma membrane of Plasmodium falciparum has been investigated by using the fluorescent pH probe 6-carboxyfluorescein. The resting cytosolic pH was 7.27 +/- 0.1 in ring stage parasites and 7.31 +/- 0.12 in trophozoites. Spontaneous acidification of parasite cytosol was observed in Na(+)-free medium and realkalinization occurred upon addition of Na+ to the medium in a concentration-dependent manner, with no apparent saturation. The rate of H(+)-efflux at the ring stage was higher than that at the trophozoite stage due to the larger surface/volume ratio of the young parasite stage. Na(+)-dependent H(+)-efflux was: 1) inhibited by the Na+/H+ inhibitors amiloride and 5-(N-ethyl-N-isopropyl) amiloride (EIPA), though at relatively high concentrations; 2) augmented with rising pH6 (pHi = 6.2, [Na+]o = 30 mM); and 3) decreased with increasing pHi (pHo = 7.4; [Na+]o = 30 mM). The pHi and the pHo dependencies of H(+)-efflux were almost identical at all parasite stages. Only at pHi > 7.6 efflux was totally obliterated. The target of this inhibitory effect is probably other than the antiport. Results indicate that H(+)-egress is mediated by a Na+/H+ antiport which is regulated by host and parasite pH and by the host cytosol sodium concentration. The proton transport capacity of the antiport can easily cope with all the protons of lactic acid produced by parasite's glycolysis.  相似文献   

17.
Increasing extracellular pH from 7.4 to 8.5 caused a dramatic increase in the time required to recover from a glutamate (3 microM, for 15 s)-induced increase in intracellular Ca2+ concentration ([Ca2+]i) in indo-1-loaded cultured cortical neurons. Recovery time in pH 7.4 HEPES-buffered saline solution (HBSS) was 126 +/- 30 s, whereas recovery time was 216 +/- 19 s when the pH was increased to 8.5. Removal of extracellular Ca2+ did not inhibit the prolongation of recovery caused by increasing pH. Extracellular alkalinization caused rapid intracellular alkalinization following glutamate exposure, suggesting that pH 8.5 HBSS may delay Ca2+ recovery by affecting intraneuronal Ca2+ buffering mechanisms, rather than an exclusively extracellular effect. The effect of pH 8.5 HBSS on Ca2+ recovery was similar to the effect of the mitochondrial uncoupler carbonyl cyanide p-(trifluoromethoxyphenyl)hydrazone (FCCP; 750 nM). However, pH 8.5 HBSS did not have a quantitative effect on mitochondrial membrane potential comparable to that of FCCP in neurons loaded with a potential-sensitive fluorescent indicator, 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolocarbocyanine++ + iodide (JC-1). We found that the effect of pH 8.5 HBSS on Ca2+ recovery was completely inhibited by the mitochondrial Na+/Ca2+ exchange inhibitor CGP-37157 (25 microM). This suggests that increased mitochondrial Ca2+ efflux via the mitochondrial Na+/Ca2+ exchanger is responsible for the prolongation of [Ca2+]i recovery caused by alkaline pH following glutamate exposure.  相似文献   

18.
BACKGROUND: Primary non-function of liver allografts is related to preservation time, during which hypoxia leads to intracellular accumulation of acid. Preservation-induced failure of hepatocellular pH regulation may play a role in the pathogenesis of primary graft non-function. METHODS: Using cultured/suspended rat hepatocytes and fluorimetric determination of intracellular pH, we determined whether preservation in University of Wisconsin solution (4 degrees C) impairs hepatocellular defence mechanisms against acidosis. RESULTS: In non-preserved, 24-h-preserved and 48-h-preserved hepatocytes acidified to pH 6.7-6.8, initial Na+/H+ antiport-mediated H+ fluxes averaged 12 +/- 5, 9 +/- 5 and 12 +/- 5 nmol microL-1 min-1 and initial Na+/HCO3- symport-mediated HCO3- fluxes 7 +/- 2, 7 +/- 3 and 6 +/- 2 nmol microL-1 min respectively (P = NS). Preservation did not affect the inverse relationship between Na+/H+ antiport activity and intracellular pH. Thus, hepatocellular defence against intracellular acidosis is maintained during up to 48 h in University of Wisconsin solution. CONCLUSION: Altered pHi homeostasis is unlikely to play a role in the pathogenesis of primary non-function of liver allografts.  相似文献   

19.
There is mounting evidence that inflammation and associated excitotoxicity may play important roles in various neurodegenerative disorders, such as bacterial infections, Alzheimer's disease, AIDS dementia, and multiple sclerosis. The immunogen E. coli lipopolysaccharide (LPS, endotoxin) has been widely used to stimulate immune/inflammatory responses both systemically and in the CNS. Here, we show that exposure of parietal cortical slices from adult rats to LPS triggered very rapid (<2.5 min) and sustained releases of the neurotransmitters glutamate and noradrenaline, and of the neuromodulator adenosine. The responses to LPS declined rapidly following removal of the LPS and exhibited no tachyphylaxis to repeated exposures to LPS. The detoxified form of LPS had no effect. LPS-evoked release of [3H]noradrenaline, but not of glutamate or adenosine, appears to be partly due to the released glutamate acting at ionotropic receptors on the noradrenergic axons present in the cortical slices. LPS appears to release glutamate, which then acts at non-NMDA receptors to remove the voltage-sensitive Mg2+ block of NMDA receptors, thus permitting NMDA receptors to be activated and noradrenaline release to proceed. It seems possible that rapid, inappropriate excitation may occur in the immediate vicinity of gram-negative bacterial infections in the brain. If similar inappropriate excitations are also triggered by those immunogens specifically associated with Alzheimer's disease (beta-amyloid), AIDS dementia (gp120 and gp41), or multiple sclerosis (myelin basic protein), they might explain some of the acute, transient neurological and psychiatric symptoms associated with these disorders.  相似文献   

20.
Pancreatic duct epithelial cells (PDECs) mediate the pancreatic secretion of fluid and electrolytes. Membrane K+ channels on these cells regulate intracellular K+ concentration; in combination with the Na+/H+ antiport and Na+,K+ adenosine triphosphatase (ATPase), they may also mediate serosal H+ secretion, balancing luminal HCO3- secretion. We describe the K+ conductances on well-differentiated and functional nontransformed cultured dog PDECs. Through 86Rb+ efflux studies, we demonstrated Ca(2+)-activated K+ channels that were stimulated by A23187, thapsigargin, and 1-ethyl-2-benzimidazolinone, but not forskolin. These conductances also were localized on the basolateral membrane because 86Rb+ efflux was directed toward the serosal compartment. Of the K+ channel blockers, BaCl2, charybdotoxin, clotrimazole, and quinidine, but not 4-aminopyridine, apamin, tetraethylammonium, or iberiotoxin, inhibited 86Rb+ efflux. This efflux was not inhibited by amiloride, ouabain, and bumetanide, inhibitors of the Na+/H+ antiport, the Na+,K(+)-ATPase pump, and the Na+,K+,2Cl- cotransporter, respectively. When apically permeabilized PDEC monolayers were mounted in Ussing chambers with a luminal-to-serosal K+ gradient, A23187 and 1-ethyl-2-benzimidazolinone stimulated a charybdotoxin-sensitive short-circuit current (Isc) increase. Characterization of K+ channels on these cultured PDECs, along with previous identification of Cl- channels (1), further supports the importance of these cells as models for pancreatic duct secretion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号