首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The present study was undertaken to investigate the influence of ceria on the physicochemical and catalytic properties of V2O5/TiO2–ZrO2 for oxidative dehydrogenation of ethylbenzene to styrene utilizing CO2 as a soft oxidant. Monolayer equivalents of ceria, vanadia and ceria–vanadia combination over TiO2–ZrO2 (TZ) support were impregnated by a coprecipitation and wet impregnation methods. Synthesized catalysts were characterized by using X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy, temperature programmed reduction, transmission electron microscopy and BET surface area methods. The XRD profiles of 550 °C calcined samples revealed amorphous nature of the materials. Upon increasing calcination temperature to 750 °C, in addition to ZrTiO4 peaks, few other lines due to ZrV2O7 and CeVO4 were observed. The XPS V 2p results revealed the existence of V4+ and V5+ species at 550 and 750 °C calcinations temperatures, respectively. TEM analysis suggested the presence of nanosized (<7 nm) particles with narrow range distribution. Raman measurements confirmed the formation ZrTiO4 under high temperature treatments. TPR measurements suggested a facile reduction of CeO2–V2O5/TZ sample. Among various samples evaluated, the CeO2–V2O5/TZ sample exhibited highest conversion and nearly 100% product selectivity. In particular, the addition of ceria to V2O5/TZ suppressed the coke deposition and allowed a stable and high catalytic activity.  相似文献   

2.
The subject of this paper is the effect of foreign cations on the reactivity of the CaO-SiO2-Al2O3-Fe2O3 system. One reference mixture and eighteen modified mixtures, prepared by mixing the reference sample with 1% w/w of chemical grade MnO2, CuO, V2O5, PbO, CdO, ZrO2, Li2O, MoO3, Co2O3, NiO, WO3, ZnO, Nb2O5, CrO3, Ta2O5, TiO2, BaO2 and H3BO3 were studied. The effect on the reactivity is evaluated on the basis of the free lime content in samples sintered at 1200 and 1450 °C. At 1200 °C, the reactivity of the mixture is greatly increased in the presence of Cu and Li oxides. Based on their effect at 1450 °C, the added elements can be divided into three groups. W, Ta, Cu, Ti and Mo show the most positive effect, decreasing the free CaO (fCaO) content by 30-60%, compared with the pure sample. Cr and B cause an increase of fCaO content, while the rest of the elements exhibit a marginal positive effect. According to their volatility at 1450 °C, the added compounds can be subdivided into three groups of low (Ti4+, Cu2+, Mo6+, W+6, V5+, Zn2+, Zr4+), moderate (Cr6+, Co3+, Ni2+, Mn4+) and high volatility (Cd2+, Pb2+). All burned samples, analyzed by means of X-ray diffraction, have a final mineralogical composition, which corresponds to the structure of a typical clinker.  相似文献   

3.
RuO2-based electrodes are generally known to be unstable for O2 evolution. In this paper, a stable type of RuO2-based electrode, Ti/RuO2-Sb2O5-SnO2, is demonstrated for O2 evolution. In the ternary oxide coating, RuO2 serves as the catalyst, SnO2 as the dispersing agent, and Sb2O5 as the dopant. The accelerated life test showed that the Ti/RuO2-Sb2O5-SnO2 electrode containing 12.2 molar percent of RuO2 nominally in the coating had a service life of 307 h in 3 M H2SO4 solution under a current density of 0.5 A cm−2 at 25 °C, which is more than 15 times longer than other types of RuO2-based electrodes. Instrumental analysis indicated that RuO2-Sb2O5-SnO2 was a solid solution with a compact structure, which contributed to the stable nature of the electrode.  相似文献   

4.
In this study, ultra-thin nanobelts of Ag2V4O11/Ag were successfully synthesized. The synthesized ultra-thin nanobelts of Ag2V4O11/Ag are highly crystalline and the thickness is found to be about 5 nm. A lithium battery using ultra-thin nanobelts of Ag2V4O11/Ag as the active materials of the positive electrode exhibits a high initial discharge capacity of 276 mAh g−1, corresponding to the formation of LixAg2V4O11 (x = 6). With increased cycling, the electrode made of ultra-thin nanobelts of Ag2V4O11/Ag tends to loose electrochemical activity due to Ag+ ions in the ultra-thin nanobelts of Ag2V4O11 were reduced and new phase was formed.  相似文献   

5.
Supporting V2O5 onto an activated coke (AC) has been reported to significantly increase the AC's activity in simultaneous SO2 and NO removal from flue gas. To understand the role of V2O5 on SO2 removal, V2O5/AC is studied through SO2 removal reaction, surface analysis, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared (FTIR) techniques. It is found that the main role of V2O5 in SO2 removal over V2O5/AC is to catalyze SO2 oxidation through a VOSO4-like intermediate species, which reacts with O2 to form SO3 and V2O5. The SO3 formed transfers from the V sites to AC sites and then reacts with H2O to form H2SO4. At low V2O5 loadings, a V atom is able to catalyze as many as 8 SO2 molecules to SO3. At high V2O5 loadings, however, the number of SO2 molecules catalyzed by a V atom is much less, due possibly to excessive amounts of V2O5 sites in comparison to the pores available for SO3 and H2SO4 storage.  相似文献   

6.
Electrical conductivity measurements on EUROCAT V2O5–WO3/TiO2 catalyst and on its precursor without vanadia were performed at 300°C under pure oxygen to characterize the samples, under NO and under NH3 to determine the mode of reactivity of these reactants and under two reaction mixtures ((i) 2000 ppm NO + 2000 ppm NH3 without O2, and (ii) 2000 ppm NO + 2000 ppm NH3 + 500 ppm O2) to put in evidence redox processes in SCR deNOx reaction.It was first demonstrated that titania support contains certain amounts of dissolved W6+ and V5+ ions, whose dissolution in the lattice of titania creates an n-type doping effect. Electrical conductivity revealed that the so-called reference pure titania monolith was highly doped by heterovalent cations whose valency was higher than +4. Subsequent chemical analyses revealed that so-called pure titania reference catalyst was actually the WO3/TiO2 precursor of V2O5–WO3/TiO2 EUROCAT catalyst. It contained an average amount of 0.37 at.% W6+dissolved in titania, i.e. 1.07 × 1020 W6+ cations dissolved/cm3 of titania. For the fresh catalyst, the mean amounts of W6+ and V5+ ions dissolved in titania were found to be equal to 1.07 × 1020 and 4.47 × 1020 cm−3, respectively. For the used catalyst, the mean amounts of W6+ and V5+ ions dissolved were found to be equal to 1.07 × 1020 and 7.42 × 1020 cm−3, respectively. Since fresh and used catalysts have similar compositions and similar catalytic behaviours, the only manifestation of ageing was a supplementary progressive dissolution of 2.9 × 1020 additional V5+ cations in titania.After a prompt removal of oxygen, it appeared that NO alone has an electron acceptor character, linked to its possible ionosorption as NO and to the filling of anionic vacancies, mostly present on vanadia. Ammonia had a strong reducing behaviour with the formation of singly ionized vacancies. A subsequent introduction of NO indicated a donor character of this molecule, in opposition to its first adsorption. This was ascribed to its reaction with previously adsorbed ammonia strongly bound to acidic sites. Under NO + NH3 reaction mixture in the absence of oxygen, the increase of electrical conductivity was ascribed to the formation of anionic vacancies, mainly on vanadia, created by dehydroxylation and dehydration of the surface. These anionic vacancies were initially subsequently filled by the oxygen atom of NO. No atoms, resulting from the dissociation of NO and from ammonia dehydrogenation, recombined into dinitrogen molecules. The reaction corresponded to
. In the presence of oxygen, NO did not exhibit anymore its electron acceptor character, since the filling of anionic vacancies was performed by oxygen from the gas phase. NO reacted directly with ammonia strongly bound on acidic sites. A tentative redox mechanism was proposed for both cases.  相似文献   

7.
Gas-phase elemental mercury capture by a V2O5/AC catalyst   总被引:3,自引:0,他引:3  
Gas-phase elemental mercury (Hg0) capture by an activated coke (AC) supported V2O5 (V2O5/AC) catalyst was studied in simulated flue gas and compared with that by the AC. The study on the influences of V2O5 loading, temperature, capture time and flue gas components (O2, SO2, H2O and N2) shows that the Hg0 capture capability of V2O5/AC is much higher than that of AC. It increases with an increase in V2O5 loading and is promoted by O2, which indicates the important role of V2O5 in Hg0 oxidation and capture; it is promoted slightly by SO2 but inhibited by H2O; it increases with an increase in temperature up to 150 °C when Hg desorption starts. X-ray photoelectron spectroscopy analysis and sequential chemical extraction experiments indicate that the main states of Hg captured on V2O5/AC are HgO and HgSO4. Temperature programmed desorption experiments were also made to understand the stability of the Hg captured.  相似文献   

8.
Cr-doped Li9V3−xCrx(P2O7)3(PO4)2 (x = 0.0–0.5) compounds have been prepared using sol–gel method. The Rietveld refinement results indicate that single-phase Li9V3−xCrx(P2O7)3(PO4)2 (x = 0.0–0.5) with trigonal structure can be obtained. Although the initial specific capacity decreased with Cr content at a lower current rate, both cycle performance and rate capability have excited improvement with moderate Cr-doping content. Li9V2.8Cr0.2(P2O7)3(PO4)2 compound presents the good electrochemical rate and cyclic ability. The enhancement of rate and cyclic capability may be attributed to the optimizing particle size, morphologies, and structural stability during the proper amount of Cr-doping (x = 0.2) in V sites.  相似文献   

9.
Gas tunnel type plasma sprayed free-standing La2Zr2O7 coating specimens with a thickness of 300-400 μm were prepared under optimized operating conditions and were subjected to hot corrosion test in the presence of corrosive impurities such as V2O5, Na2SO4, and Na2SO4 + V2O5 mixtures (60:40 wt%) at two different temperatures for duration of 5 h, i.e. 1000 and 1350 K for V2O5 and Na2SO4 + V2O5 mixtures, 1200 and 1350 K for Na2SO4. For temperatures at 1350 K, the reaction mechanism of V2O5 and the mixture of Na2SO4 + V2O5 are similar and LaVO4 is formed as the corrosive product, which leads to massive phase transformation from pyrochlore to tetragonal and monoclinic phases. Microstructural observations from planar reaction zone (PRZ) and melt infiltrated reaction zone (MIRZ) reveals that the present La2Zr2O7 coating exhibits good hot corrosion resistance in V2O5 environment and moderate for the mixture of Na2SO4 + V2O5, but is worst in Na2SO4 environment.  相似文献   

10.
Selective oxidation of methanol to dimethoxymethane (DMM) was conducted in a fixed-bed reactor over an acid-modified V2O5/TiO2 catalyst. The influence of the acid modification on its structure, redox and acidic properties, and catalytic performance for methanol oxidation were investigated. The results indicated that the content of vanadia in the catalyst exhibits a vital influence on the dispersion of vanadium species, while the acid modification can enhance its surface acidity. Proper amounts of the acid (W() = 15%) and V2O5 (W(V2O5) = 15%) components loaded in the acid-modified V2O5/TiO2 catalyst are able to build a bi-functional circumstance that is favorable for the formation of DMM with high activity and selectivity. As a result, for the selective oxidation of methanol, the H2SO4-modified V2O5/TiO2 catalyst gives a much higher DMM yield at 150 °C than the unmodified one.  相似文献   

11.
Nanocrystalline α-Al2O3 and Ni-modified α-Al2O3 have been prepared by sol–gel and solvothermal methods and employed as supports for Pd catalysts. Regardless of the preparation method used, NiAl2O4 spinel was formed on the Ni-modified α-Al2O3 after calcination at 1150 °C. However, an addition of NiO peaks was also observed by X-ray diffraction for the solvothermal-made Ni-modified α-Al2O3 powder. Catalytic performances of the Pd catalysts supported on these nanocrystalline α-Al2O3 and Ni-modified α-Al2O3 in selective hydrogenation of acetylene were found to be superior to those of the commercial α-Al2O3 supported one. Ethylene selectivities were improved in the order: Pd/Ni-modified α-Al2O3–sol–gel > Pd/Ni-modified α-Al2O3-solvothermal ≈ Pd/α-Al2O3–sol–gel > Pd/α-Al2O3-solvothermal  Pd/α-Al2O3-commerical. As revealed by NH3 temperature program desorption studies, incorporation of Ni atoms in α-Al2O3 resulted in a significant decrease of acid sites on the alumina supports. Moreover, XPS revealed a shift of Pd 3d binding energy for Pd catalyst supported on Ni-modified α-Al2O3–sol–gel where only NiAl2O4 was formed, suggesting that the electronic properties of Pd may be modified.  相似文献   

12.
The effects of V2O5, NiO, Fe2O3 and vanadium slag on the corrosion of Al2O3 and MgAl2O4 have been investigated. The specimens of Al2O3 and MgAl2O4 with the respective oxides above mentioned were heated at 10 °C/min from room temperature up to three different temperatures: 1400, 1450 and 1500 °C. The corrosion mechanisms of each system were followed by XRD and SEM analyses. The results obtained showed that Al2O3 was less affected by the studied oxides than MgAl2O4. Alumina was only attacked by NiO forming NiAl2O4 spinel, while the MgAl2O4 spinel was attacked by V2O5 forming MgV2O6. It was also observed that Fe2O3 and Mg, Ni, V and Fe present in the vanadium slag diffused into Al2O3. On the other hand, the Fe2O3 and Ca, S, Si, Na, Mg, V and Fe diffused into the MgAl2O4 structure. Finally, the results obtained were compared with those predicted by the FactSage software.  相似文献   

13.
Ru-based catalysts supported on Ta2O5–ZrO2 and Nb2O5–ZrO2 are studied in the partial oxidation of methane at 673–873 K. Supports with different Ta2O5 or Nb2O5 content were prepared by a sol–gel method, and RuCl3 and RuNO(NO3)3 were used as precursors to prepare the catalysts (ca. 2 wt.% Ru). At 673 K high selectivity to CO2 was found. An increase of temperature up to 773 K produced an increase in the selectivity to syngas (H2/CO = 2.2–3.1), and this is related with the transformation of RuO2 to metallic Ru as was determined from XRD and XPS results. At 873 K and with co-fed CO2 an increase of the catalytic activity and CO selectivity was found. A TOF value of 5.7 s−1 and H2/CO ratio ca. 1 was achieved over Ru(Cl)/6TaZr. Catalytic results are discussed as a function of the support composition and characteristics of Ru-based phases.  相似文献   

14.
The effects of B2O3 additives on the sintering behavior, microstructure and dielectric properties of CaSiO3 ceramics have been investigated. The B2O3 addition resulted in the emergence of CaO–B2O3–SiO2 glass phase, which was advantageous to lower the synthesis temperature of CaSiO3 crystal phase, and could effectively lower the densification temperature of CaSiO3 ceramic to as low as 1100 °C. The 6 wt% B2O3-doped CaSiO3 ceramic sintered at 1100 °C possessed good dielectric properties: r = 6.84 and tan δ = 6.9 × 10−4 (1 MHz).  相似文献   

15.
Columbite MgNb2O6 (MN) and ZnNb2O6 (ZN) ceramics produced by the reaction-sintering process were investigated. Secondary phases Mg0.652Nb0.598O2.25 and Mg0.66Nb11.33O29 were found in MgNb2O6 pellets. After 1250 °C sintering for 2 h, a density 4.85 g/cm3 (97.1% of the theoretical value) was obtained in MgNb2O6 pellets. In ZnNb2O6 pellets, no secondary phase formed. The maximum density 5.55 g/cm3 (98.7% of the theoretical value) occurs at 1200 and 1180 °C sintering for 2 and 4 h, respectively.  相似文献   

16.
V2O5 was loaded on the surface of C-doped TiO2 (C-TiO2) by incipient wetness impregnation in order to enhance the visible light photocatalytic performance. The physicochemical properties of the C-TiO2/V2O5 composite were characterized by XRD, Raman, TEM, XPS, UV–vis diffuse reflectance spectra, and PL in detail. The result indicated that a heterojunction between C-TiO2 and V2O5 was formed and the separation of excited electron–hole pairs on C-TiO2/V2O5 is greatly promoted. Thus, this composite photocatalyst exhibited enhanced visible light photocatalytic activity in degradation of gas-phase toluene compared with the pristine C-TiO2.  相似文献   

17.
Nanocrystalline zinc aluminate (ZnAl2O4) particles with a spinel structure were prepared by hydrolyzing a mixture of aluminum chloride hexahydrate and zinc chloride in deionized water. It was found that pH value and reaction temperature play critical roles in the formation of nano-sized ZnAl2O4. Depending on pH values in the precursor solution, ZnAl layered double hydroxide (ZnAl-LDH), ZnO, boehmite or gibbsite could be formed. At pH 7 and T>120 °C, the nanocrystalline ZnAl2O4 particles with average particle size of ∼5 nm are easily synthesized through ZnAl layered double hydroxide (ZnAl-LDH). After surface treatment with R-OH by using the cationic surfactant CTAB, the ZnAl2O4/Eu core-shell structure can be developed. The ZnAl2O4/Eu core-shell structure can show both emissions from 5D0 to 7F2 sensitivity energy level and 5D2 to 7F0 depth energy level.  相似文献   

18.
Dry reforming of methane was studied over Ni catalysts supported on γAl2O3, CeO2, ZrO2 and MgAl2O4 (670 °C, 1.5 bar, 16–20 l CH4 mlcatalyst−1 h−1). It is shown that MgAl2O4 supported Ni catalysts promoted with both CeO2 and ZrO2 are promising catalysts for dry reforming of methane with carbon dioxide. Within a certain composition range, the simultaneous promotion with CeO2 and ZrO2 has great influence on the amount of coke and the catalyst service time. XRD analyses indicate that formation of crystalline CexZr1−xO2 mixed oxide phases occurs on double promotion. In particular, incorporation of low amounts of Zr in the CeO2 fluorite structure provides stable dry reforming catalysis. As shown with TPR, promotion leads to a higher reduced state of Ni. SEM, XRD and TPR analyses demonstrate that highly dispersed, doubly promoted Ni catalysts with a strong metal-support interaction are essential for stable dry reforming and suppression of the formation of carbon filaments.  相似文献   

19.
The sintering behaviors and microwave dielectric properties of the 16CaO–9Li2O–12Sm2O3–63TiO2 (abbreviated CLST) ceramics with different amounts of V2O5 addition had been investigated in this paper. The sintering temperature of the CLST ceramic had been efficiently decreased by nearly 100 °C. No secondary phase was observed in the CLST ceramics and complete solid solution of the complex perovskite phase was confirmed. The CLST ceramics with small amounts of V2O5 addition could be well sintered at 1200 °C for 3 h without much degradation in the microwave dielectric properties. Especially, the 0.75 wt.% V2O5-doped ceramics sintered at 1200 °C for 3 h have optimum microwave dielectric properties of Kr = 100.4, Q × f = 5600 GHz, and TCF = 7 ppm/°C. Obviously, V2O5 could be a suitable sintering aid that improves densification and microwave dielectric properties of the CLST ceramics.  相似文献   

20.
K.M. Shaju 《Electrochimica acta》2003,48(11):1505-1514
Layered Li(Ni1/2Mn1/2)O2 was prepared by the solution and mixed hydroxide methods, characterised by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) and studied by cyclic voltammetry (CV) and charge discharge cycling in CC and CCCV modes at room temperature (r.t.) and at 50 °C. The XPS studies show about 8% of Ni3+ and Mn3+ ions are present in Li(Ni2+1/2Mn1/24+)O2 due to valency-degeneracy. The compound prepared at 950 °C, 12 h, solution method gives a second cycle discharge capacity of 150 mA h g−1 (2.5-4.4 V) at a specific current of 30 mA g−1 and retains 137 mA h g−1 at the end of 40 cycles. CV shows that the redox process at 3.7-4.0 V corresponds to Ni2+↔Ni4+ and clear indication of Mn3+/4+ couple was noted at 4.2-4.5 V. The observed capacity-fading (2.5-4.4 V) is shown to be contributed by the polarisation at the end of charging. The cathodic capacity is stable up to 40 cycles in the voltage window, 2.5-4.2 V both at room temperature and 50 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号