首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To improve the damage threshold of hollow optical waveguides for transmitting Q-switched Nd:YAG laser pulses, we optimize the metallization processes for the inner coating of fibers. For silver-coated hollow fiber as the base, second, and third Nd:YAG lasers, drying silver films at a moderate temperature and with inert gas flow is found to be effective. By using this drying process, the resistance to high-peak-power optical pulse radiation is drastically improved for fibers fabricated with and without the sensitizing process. The maximum peak power transmitted in the fiber is greater than 20 MW. To improve the energy threshold of aluminum-coated hollow fibers for the fourth and fifth harmonics of Nd:YAG lasers, a thin silver film is added between the aluminum film and the glass substrate to increase adhesion of the aluminum coating. By using this primer layer, the power threshold improves to 3 MW for the fourth harmonics of a Q-switched Nd:YAG laser light.  相似文献   

2.
Miller J  Yu XB  Yu PK  Cringle SJ  Yu DY 《Applied optics》2011,50(6):876-885
Ultraviolet (UV) lasers have the capability to precisely remove tissue via ablation; however, due to strong absorption of the applicable portion the UV spectrum, their surgical use is currently limited to extraocular applications at the air/tissue boundary. Here we report the development and characterization of a fiber-optic laser delivery system capable of outputting high-fluence UV laser pulses to internal tissue surfaces. The system has been developed with a view to intraocular surgical applications and has been demonstrated to ablate ocular tissue at the fluid/tissue boundary. The fifth (213?nm) and fourth(266?nm) harmonics of a Nd:YAG laser were launched into optical fibers using a hollow glass taper to concentrate the beam. Standard and modified silica/silica optical fibers were used, all commercially available. The available energy and fluence as a function of optical fiber length was evaluated and maximized. The maximum fluence available to ablate tissue was affected by the wavelength dependence of the fiber transmission; this maximum fluence was greater for 266?nm pulses (8.4?J/cm2) than for 213?nm pulses (1.4?J/cm2). The type of silica/silica optical fiber used did not affect the transmission efficiency of 266?nm pulses, but transmission of 213?nm pulses was significantly greater through modified silica/silica optical fiber. The optical fiber transmission efficiency of 213?nm pulses decreased as a function of number of pulses transmitted, whereas the transmission efficiency of 266?nm radiation was unchanged. Single pulses have been used to ablate fresh porcine ocular tissue. In summary, we report a method for delivering the fifth (213?nm) and fourth (266?nm) harmonics of a Nd:YAG laser to the surface of immersed tissue, the reliability and stability of the system has been characterized, and proof of concept via tissue ablation of porcine ocular tissue demonstrates the potential for the intraocular surgical application of this technique.  相似文献   

3.
Mohri S  Kasai T  Abe Y  Shi YW  Matsuura Y  Miyagi M 《Applied optics》2002,41(7):1251-1255
We propose sealing techniques for medical hollow fibers to protect the inner surface of fibers from debris or water that scatters from targets. First, hollow fibers are sealed with a film of polymer that is easily formed by use of a dipping technique. The transmission loss of 20-microm-thick sealing film was 0.2 dB for Er:YAG laser light, and the maximum energy that is available for the film was 180 mJ. Second, a sealed glass cap was applied to the output end of hollow fiber. The silica-glass cap with a wall thickness of 400 microm shows a transmission loss of 0.5 dB and was not damaged by radiation of 400-mJ energy pulses.  相似文献   

4.
Venturo VA  Joly AG  Ray D 《Applied optics》1997,36(21):5048-5052
We describe a method for the generation of readily synchronizable, near-transform-limited, 1064-nm, 6-mJ pulses with <20-ps duration at a repetition rate of 20 Hz. The method employs chirped pulse amplification of spectrally broadened and temporally stretched pulses from a cw mode-locked Nd:YAG laser in a commercial Nd:YAG regenerative amplifier followed by pulse compression with a grating pair. Linear amplification subsequent to regenerative amplification is not required with this method, although higher energies would be easily obtained.  相似文献   

5.
Shi YW  Ito K  Ma L  Yoshida T  Matsuura Y  Miyagi M 《Applied optics》2006,45(26):6736-6740
The techniques for fabricating a hollow optical fiber with an inner silver layer and a cyclic olefin polymer (COP) layer have been improved to reduce the surface roughness of these two layers. The loss spectrum was thereby drastically reduced over a wide wavelength range, from visible to near infrared. Optimization of the COP layer thickness resulted in low loss simultaneously at several key laser wavelengths. Infrared hollow fiber with low loss was developed for Er:YAG and Nd:YAG lasers. It can also deliver green and red pilot beams with low loss. Use of this fiber in therapeutic and pilot lasers should prove useful for research and development in laser medicine.  相似文献   

6.
Yashkir Y  van Driel HM 《Applied optics》1999,38(12):2554-2559
We demonstrate an eye-safe KTP-based optical parametric oscillator (OPO) driven intracavity by a diode-pumped 1064-nm Nd:YAG laser, passively Q-switched by a Cr4+:YAG crystal. The characteristics of this system, which operates at 1570 nm with a repetition rate as high as 50 Hz, are studied as a function of Cr4+:YAG optical density. Under optimum conditions the OPO generates 1.5-mJ, 3.4 +/- 0.1-ns pulses in a single transverse mode. For a Cr4+:YAG Q-switch element with an optical density of 0.5 the conversion efficiency of the intracavity energy is approximately 45% with the ratio of OPO to Nd:YAG peak-pulse intensity exceeding unity. These and other OPO characteristics compare favorably with a simple rate equation model of the OPO dynamics.  相似文献   

7.
A bundle of optical fibers was constructed to deliver Q-switched frequency-doubled Nd:YAG laser pulses for the purpose of particle image velocimetry. Data loss that is due to fiber speckle was reduced by ensuring that each fiber was different in length by more than the coherence length of the laser being delivered. Hence, their speckle patterns will overlap but not interfere, producing more even illumination that is shown to reduce data loss. A custom-made diffractive optical element and careful endface preparation help to reduce damage to the fibers by the required high peak powers. With this method, pulse energies in excess of 25 mJ were delivered for a series of experimental trials within the cylinder head of an optically accessed internal combustion engine. Results from these trials are presented along with a comparison of measurements generated by conventionally delivered beams.  相似文献   

8.
Millot G  Dudley JM 《Applied optics》2002,41(13):2589-2591
A convenient technique for polarization-mode dispersion measurements in short lengths of high-birefringence fibers is reported. The technique is based on spectral interferometry with a frequency-doubled Nd:YAG laser, which is frequency shifted and broadened by self-stimulated Raman scattering in an optical fiber. The different Raman Stokes beams permit accurate measurements over a 40-nm wavelength range in the visible spectrum.  相似文献   

9.
We observed spectral broadening caused by self-phase modulation in 400- and 600-mum core diameter fibers using amplified, Q-switched, Nd:YAG laser pulses with peak powers to 150 kW. The degree of spectral broadening was not dependent linearly on the fiber length as in single-mode fibers because of the more complicated modal evolution in highly multimode fiber. Furthermore, even slight stress near the input end of the fiber reduced the observed broadening. The results have significant implications for the delivery of high-peak-power laser beams through optical fiber with high-output beam quality for industrial applications.  相似文献   

10.
We report the delivery of high-energy nanosecond pulses (approximately 65 ns pulse width) from a high-repetition-rate (up to 100 kHz) Q-switched Nd:YAG laser through the fundamental mode of a hollow-core photonic crystal fiber (HC-PCF) at 1064 nm. The guided mode in the HC-PCF has a low overlap with the glass, allowing delivery of pulses with energies above those attainable with other fibers. Energies greater than 0.5 mJ were delivered in a single spatial mode through the hollow-core fiber, providing the pulse energy and high beam quality required for micromachining of metals. Practical micromachining of a metal sheet by fiber delivery has been demonstrated.  相似文献   

11.
Rhodamine 6G and Rhodamine B dye mixture doped polymer optical fiber amplifier (POFA), which can operate in a broad wavelength region (60 nm), has been successfully fabricated and tested. Tunable operation of the amplifier over a broad wavelength region is achieved by mixing different ratios of the dyes. The dye doped POFA is pumped axially using 532 nm, 10 ns laser pulses from a frequency doubled Q-switched Nd: YAG laser and the signals are taken from an optical parametric oscillator. A maximum gain of 22.3 dB at 617 nm wavelength has been obtained for a 7 cm long dye mixture doped POFA. The effects of pump energy and length of the fiber on the performance of the fiber amplifier are also studied. There exists an optimum length for which the amplifier gain is at a maximum value.  相似文献   

12.
This article reports what are to the authors' knowledge the first gas-phase laser-induced breakdown spectroscopy (LIBS) measurements using a fiber-optically delivered spark. A silver- and polymer-coated hollow fiber delivered high-energy nanosecond 1064 nm Nd:YAG laser pulses, which were focused to generate high-energy-density plasmas in ultra-lean methane-air mixtures. Emissions from these plasmas were collected and spectroscopically analyzed to quantify relative fuel-to-air ratio. These measurements were compared with others made using traditional LIBS techniques without the fiber-optically delivered spark. Similar results were obtained, but with larger shot-to-shot variability, for the case of the fiber-optically delivered spark.  相似文献   

13.
Yilmaz O  Miyagi M  Matsuura Y 《Applied optics》2006,45(27):7174-7178
A hollow-fiber bundle was designed and used to deliver high-peak-power pulses from a Q-switched Nd:YAG laser. An 80 cm long bundle with a total diameter of 5.5 mm was composed of 37 glass capillaries with bore diameters of 0.7 mm. Beam-resizing optics with two lenses were used to couple the laser beam into the bundle. The measured coupling loss due to the limited aperture ratio of the bundle was 2.3 dB, and the transmission loss at wavelengths of 1064 and 532 nm was 0.3 dB. When an inert gas flowed through the bores of the capillaries, the maximum output pulse energy was 200 mJ, which was the limit of the laser used in the experiment. Hollow-fiber bundles withstand irradiation better than single hollow fibers and silica-glass optical fibers do. They are suitable for many dermatological applications because they can be used to irradiate a large area.  相似文献   

14.
He GS  Yuan L  Bhawalkar JD  Prasad PN 《Applied optics》1997,36(15):3387-3392
Optical limiting, pulse reshaping, and stabilization effects have been demonstrated based on a two-photon absorption mechanism with a dye-solution-filled hollow fiber system. The nonlinear absorptive medium is the solution of a new dye, trans-4-[p-(N-hydroxyethyl-N-methylamino)styryl]-N-methylpyridinium iodide (ASPI) in dimethyl sulfoxide, with which we filled a 20-cm-long quartz hollow fiber of 100-mum internal diameter. The input optical signal was a laser pulse train that contained ~30 pulses of 130-ps pulse width. When the input peak intensity reached 400-1000-MW/cm(2) levels, obvious optical limiting could be observed and the envelope of the transmitted pulse train became flatter and broader. By using another new dye solution, 4-[N-(2-hydroxyethyl)-N-(methyl)amino phenyl]-4?-(6-hydroxyhexyl sulfonyl)-stilbene (APSS) in benzyl alcohol, which interacted with a series of ~800-nm laser pulses of ~8-ns pulse width, we obtained a much higher nonlinear absorption coefficient and a superior optical peak-power stabilization effect.  相似文献   

15.
高透光率Nd:YAG透明陶瓷的制备与性能研究   总被引:5,自引:0,他引:5  
以Y(NO3)3·6H2O、Al (NO3)3·9H2O、(NH4)2SO4和Nd(NO3)3为原料, NH4HCO3为沉淀剂, 以TEOS作为添加剂, 采用共沉淀法制备出Nd:YAG前驱体粉体; 前驱体经过1200℃煅烧5h后, 得到分散性好, 颗粒近似球型、纯YAG立方相的Nd:YAG纳米粉体, 其平均粒径约为100nm. 煅烧后的粉体压制成素坯, 在1700~1800℃煅烧10h, 可获得透光性良好的Nd:YAG激光透明陶瓷, YAG晶粒的平均尺寸为15μm, 晶界处和晶粒内没有杂质、气孔存在, 无散射中心. 1.5mm厚的样品在近红外波长为1064nm处透过率为83.5%, 基本接近于透明Nd:YAG晶体的理论值.  相似文献   

16.
Miller J  Yu PK  Cringle SJ  Yu DY 《Applied optics》2007,46(3):413-420
We report on a method for delivering high fluence pulsed 266 nm laser radiation to the target tissue via an optical fiber. The fourth harmonic of a Nd:YAG laser was concentrated using a hollow glass taper and launched into an optical fiber. Fluences of up to 2 J/cm(2) were routinely output at the tapered optical fiber tip. The maximum fluence generated before failure of the optical fiber was between 3.5 and 8 J/cm(2). Ablation of ocular tissue was demonstrated using fluences of 1.0 and 0.4 J/cm(2). The delivery system has the potential for use in intraocular surgical procedures.  相似文献   

17.
A unique ultranarrowband fiber-optic phase-shifted Fabry-Perot Bragg grating filter for atmospheric water vapor lidar measurements was designed, fabricated, and successfully tested. Customized optical fiber Bragg gratings were fabricated so that two transmission filter peaks occurred: one (89% transmission, 8 pm FWHM) near the 946-nm water vapor absorption line and the other peak (80% transmission, 4 pm FWHM) at a region of no absorption. Both transmission peaks were within a 2.66-nm stop band. Demonstration of tension tuning to the 946.0003-nm water vapor line was achieved, and the performance characterization of custom-made optical fiber Bragg grating filters are presented. These measurements are successfully compared to theoretical calculations using a piecewise-matrix form of the coupled-mode equations.  相似文献   

18.
We report the use of an inexpensive, small, and "turn-key" Q-switched 532-nm Nd:YAG laser as a source for nonlinear, direct-write protein microfabrication. In this approach, microJoule pulses (pulse widths, approximately 600 ps) are focused using high numerical aperture optics to submicrometer focal spots, creating instantaneous intensities great enough to promote multiphoton excitation of a photosensitizer and subsequent intermolecular cross-linking of protein molecules. By scanning the femtoliter focal volume through reagent solution, extended protein-based structures can be fabricated with precise, three-dimensional topographies. As with earlier studies using a femtosecond titanium:sapphire laser costing more than 100K, physically robust and chemically responsive microstructures can be fashioned rapidly with feature sizes smaller than 0.5 microm, and cross-linking can be achieved using both biologically benign sensitizers (e.g., flavins) and by using the proteins themselves to sensitize cross-linking. We demonstrate in situ fabrication to corral neurite outgrowth and show the ability to functionalize avidin structures with biotinylated reagents, an approach that enables chemical sensing to be performed in specified microenvironments. Characterization of this inexpensive, low-power source will greatly broaden access to direct-write protein microfabrication.  相似文献   

19.
The fiber-optic delivery of sparks in gases is challenging as the output beam must be refocused to high intensity (approximately 200 GW/cm(2) for nanosecond pulses). Analysis suggests the use of coated hollow core fibers, fiber lasers, and photonic crystal fibers (PCFs). We study the effects of launch conditions and bending for 2 m long coated hollow fibers and find an optimum launch f# of approximately 55 allowing spark formation with approximately 98% reliability for bends up to a radius of curvature of 1.5 m in atmospheric pressure air. Spark formation using the output of a pulsed fiber laser is described, and delivery of 0.55 mJ pulses through PCFs is shown.  相似文献   

20.
丁腈橡胶中空纤维阻尼新材料的制备及性能   总被引:1,自引:0,他引:1  
针对丁腈橡胶(NBR)黏度过大和相转化时间较长难于纺制中空纤维的问题, 采用先与聚氯乙烯(PVC)共混改性再用干-湿相转化的方法制备出轻质、低耗材的丁腈橡胶中空纤维阻尼新材料, 探讨了NBR与PVC质量比和共混聚合物质量分数对NBR中空纤维阻尼及力学性能的影响。结果表明: 中空纤维结构阻尼性能明显优于对应的平板膜结构; 调整NBR与PVC质量比和共混聚合物质量分数可优化NBR中空纤维的拉伸性能及阻尼性能; 可通过提高NBR与PVC质量比使NBR中空纤维阻尼材料的损耗因子峰值所对应的温度向低温方向偏移。共混聚合物质量分数为25%, NBR与PVC质量比为80∶20时, NBR中空纤维阻尼损耗因子最大, 达到0.78。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号