首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tada H  Mann SE  Miaoulis IN  Wong PY 《Applied optics》1998,37(9):1579-1584
Multilayer thin-film structures in butterfly wing scales produce a colorful iridescence from reflected sunlight. Because of optical phenomena, changes in the angle of incidence of light and the viewing angle of an observer result in shifts in the color of butterfly wings. Colors ranging from green to purple, which are due to nonplanar specular reflection, can be observed on Papilio blumei iridescent scales. This refers to a phenomenon in which the curved surface patterns in the thin-film structure cause the specular component of the reflected light to be directed at various angles while affecting the spectral reflectivity at the same time by changing the optical path length through the structure. We determined the spectral reflectivities of P. blumei iridescent scales numerically by using models of a butterfly scale microstructure and experimentally by using a microscale-reflectance spectrometer. The numerical models accurately predict the shifts in spectral reflectivity observed experimentally.  相似文献   

2.
Multilayer thin‐film structures in the wings of a butterfly; Papilio crino produce a colourful iridescence from reflected light. In this investigation, scanning electron microscope images show both the concave cover scales and pigmented air‐chamber ground scales. The microstructures with the concavities retroreflect incident light, thus causing the double reflection. This gives rise to both the colour mixing and polarisation conversion clearly depicted in the optical images. The result of the numerical and theoretical analysis via the CIELAB, and optical reflection and transmission of light through the multilayer stacks with the use of transfer method show that the emerging colouration on the Papilio crino is structural and is due to the combination of colours caused by multiple bounces within the concavities. The butterfly wing structure can be used as the template for designing the photonic device.Inspec keywords: bio‐optics, scanning electron microscopy, photodiodes, optical sensors, optical images, light reflection, reflectivity, colour, optical links, multilayers, optical multilayers, light polarisationOther keywords: pigmented air‐chamber ground scales, concavities, incident light, double reflection, colour mixing, polarisation conversion, optical images, numerical analysis, theoretical analysis, optical reflection, multilayer stacks, emerging colouration, butterfly wing structure, papilio crino fabricius, thin‐film structures, colourful iridescence, reflected light, electron microscope images, concave cover scales  相似文献   

3.
Many butterfly species possess 'structural' colour, where colour is due to optical microstructures found in the wing scales. A number of such structures have been identified in butterfly scales, including three variations on a simple multi-layer structure. In this study, we optically characterize examples of all three types of multi-layer structure, as found in 10 species. The optical mechanism of the suppression and exaggeration of the angle-dependent optical properties (iridescence) of these structures is described. In addition, we consider the phylogeny of the butterflies, and are thus able to relate the optical properties of the structures to their evolutionary development. By applying two different types of analysis, the mechanism of adaptation is addressed. A simple parsimony analysis, in which all evolutionary changes are given an equal weighting, suggests convergent evolution of one structure. A Dollo parsimony analysis, in which the evolutionary 'cost' of losing a structure is less than that of gaining it, implies that 'latent' structures can be reused.  相似文献   

4.
Bosi SG  Hayes J  Large MC  Poladian L 《Applied optics》2008,47(29):5235-5241
This paper examines evidence for the hypothesized connection between solar thermal properties of butterfly and moth (Lepidoptera) wings, iridescence/structural color, and thermoregulation. Specimens of 64 species of Lepidoptera were measured spectrophotometrically, their solar absorptances calculated, and their habitat temperatures determined. No correlation was found between habitat temperature and the solar absorptance of the wings. It was found, however, that the iridescent specimens exhibited, on average, substantially higher solar absorptance than noniridescent ones.  相似文献   

5.
Sassen K 《Applied optics》2003,42(3):486-491
On the evening of 25 November 1998, a cirrus cloud revealing the pastel colors of the iridescence phenomenon was photographed and studied by a polarization lidar system at the University of Utah Facility for Atmospheric Remote Sensing (FARS). The diffraction of sunlight falling on relatively minute cloud particles, which display spatial gradients in size, is the cause of iridescence. According to the 14-year study of midlatitude cirrus clouds at FARS, cirrus rarely produce even poor iridescent patches, making this particularly long-lived and vivid occurrence unique. In this unusually high (13.2-14.4-km) and cold (-69.7 degrees to -75.5 degrees) tropopause-topped cirrus cloud, iridescence was noted from approximately 6.0 degrees to approximately 13.5 degrees from the Sun. On the basis of simple diffraction theory, this indicates the presence of particles of 2.5-5.5-microm effective diameter. The linear depolarization ratios of delta = 0.5 measured by the lidar verify that the cloud particles were nonspherical ice crystals. The demonstration that ice clouds can generate iridescence has led to the conclusion that iridescence is rarely seen in midlatitude cirrus clouds because populations of such small particles do not exist for long in the presence of the relatively high water-vapor supersaturations needed for ice-particle nucleation.  相似文献   

6.
The blue colouration seen in the leaves of Selaginella willdenowii is shown to be iridescent. Transmission electron microscopy studies confirm the presence of a layered lamellar structure of the upper cuticle of iridescent leaves. Modelling of these multi-layer structures suggests that they are responsible for the blue iridescence, confirming the link between the observed lamellae and the recorded optical properties. Comparison of blue and green leaves from the same plant indicates that the loss of the blue iridescence corresponds to a loss of the multi-layer structure. The results reported here do not support the idea that iridescence in plants acts to enhance light capture of photosynthetically important wavelengths. The reflectance of light in the range 600–700 nm is very similar for both iridescent and non-iridescent leaves. However, owing to the occurrence of blue colouration in a wide variety of shade dwelling plants it is probable that this iridescence has some adaptive benefit. Possible adaptive advantages of the blue iridescence in these plants are discussed.  相似文献   

7.
Many cephalopods exhibit remarkable dermal iridescence, a component of their complex, dynamic camouflage and communication. In the species Euprymna scolopes, the light-organ iridescence is static and is due to reflectin protein-based platelets assembled into lamellar thin-film reflectors called iridosomes, contained within iridescent cells called iridocytes. Squid in the family Loliginidae appear to be unique in which the dermis possesses a dynamic iridescent component with reflective, coloured structures that are assembled and disassembled under the control of the muscarinic cholinergic system and the associated neurotransmitter acetylcholine (ACh). Here we present the sequences and characterization of three new members of the reflectin family associated with the dynamically changeable iridescence in Loligo and not found in static Euprymna iridophores. In addition, we show that application of genistein, a protein tyrosine kinase inhibitor, suppresses ACh- and calcium-induced iridescence in Loligo. We further demonstrate that two of these novel reflectins are extensively phosphorylated in concert with the activation of iridescence by exogenous ACh. This phosphorylation and the correlated iridescence can be blocked with genistein. Our results suggest that tyrosine phosphorylation of reflectin proteins is involved in the regulation of dynamic iridescence in Loligo.  相似文献   

8.
Koon DW  Crawford AB 《Applied optics》2000,39(15):2496-2498
We measured the visible reflectance spectra of whole wing sections from three species of iridescent butterflies and moths, for normal incidence, integrated over all reflected angles. In this manner, we separated the optics of the thin films causing the iridescence from the optics of the rest of the scale. We found that iridescence reduces solar absorption by the wing in all cases, typically by approximately 20% or less, in contrast to claims by Miaoulis and Heilman [Ann. Entomol. Soc. Am. 91, 122 (1998)] that the thin-film structures that produce iridescence act as solar collectors.  相似文献   

9.
Shaw JA  Pust NJ 《Applied optics》2011,50(28):F6-11
Dual-polarization lidar data and radiosonde data are used to determine that iridescence in cirrus and a lunar corona in a thin wave cloud were caused by tiny ice crystals, not droplets of liquid water. The size of the corona diffraction rings recorded in photographs is used to estimate the mean diameter of the diffracting particles to be 14.6 μm, much smaller than conventional ice crystals. The iridescent cloud was located at the tropopause [~11-13.6 km above mean sea level (ASL)] with temperature near -70 °C, while the more optically pure corona was located at approximately 9.5 km ASL with temperature nearing -60 °C. Lidar cross-polarization ratios of 0.5 and 0.4 confirm that ice formed both the iridescence and the corona, respectively.  相似文献   

10.
Rubin B  Kobsa H  Shearer SM 《Applied optics》1997,36(25):6388-6392
An optical model that predicts the reflection of light by a synthetic fiber of arbitrary cross-sectional shape is described. The model uses a Monte Carlo simulation of an exact ray trace of light for incident rays directed at a selected angle to the fiber axis. The model revealed an optical effect in round fibers that led to the prediction of a new mechanism for iridescence (change of color with angle of illumination or view) in a fabric by means of round, concentric, sheath-core fibers, with core size 相似文献   

11.
The interference colors resulting from thin films of Al2O3 deposited by atomic layer deposition (ALD) on silicon have been rigorously analyzed using a recently developed robotic gonioreflectometer. A series of eleven increasingly thick films was deposited, up to 1613 Å, and their reflectance values obtained for the visible spectrum. A comparison of these values with the predictions of computer simulations employing Fresnel equations has revealed that while there was generally good agreement between predicted and measured spectra, there are some spectral regions that exhibit large deviations from predicted reflectances, typically at near-normal measurement angles and shorter wavelengths. The effect of these discrepancies on color appearance was investigated in the CIE L*a*b* color space for the daylight illuminant D65. Large iridescence is both predicted and measured for most film thicknesses. Chroma and hue differences as large as 20 CIELAB units between the predicted and the measured color centers were obtained. Simulation also predicts larger iridescence than what is actually measured. A likely cause for the observed discrepancies is that the dielectric constants of the ALD films deviate from the literature values for the bulk material.  相似文献   

12.
针对粉粒物料运输车自动卸料的需要,首先,利用流体动力学理论,分析气粉混合的两相流体在不同入口流速时对开闭蝶阀动扭矩和轴承扭矩的影响。并利用自由流线理论求出流体流经蝶阀不同开口角度时的收口系数。其次,构造电磁驱动系统,对该驱动系统进行电磁学特性分析,以求出驱动蝶阀的电磁力,以及电磁力与电流之间的关系。并利用一阶暂态理论分析电阻电感电路,求出驱动器动铁芯位移对电路电流波动的影响。继而,利用机械动力学理论对该蝶阀及其电磁驱动系统进行非线性分析。设定蝶阀入口流体的不同速度,利用Simulink进行数值模拟,分析电流、蝶阀开闭速度、蝶阀开口角度的变化规律,以获知自动卸料系统中电路电流波动较小与蝶阀转速更平稳的基本参数。  相似文献   

13.
14.
Different from studies of butterfly wings through additive modification, this work for the first time studies the property change of butterfly wings through subtractive modification using oxygen plasma etching. The controlled modification of butterfly wings through such subtractive process results in gradual change of the optical properties, and helps the further understanding of structural optimization through natural evolution. The brilliant color of Morpho butterfly wings is originated from the hierarchical nanostructure on the wing scales. Such nanoarchitecture has attracted a lot of research effort, including the study of its optical properties, its potential use in sensing and infrared imaging, and also the use of such structure as template for the fabrication of high‐performance photocatalytic materials. The controlled subtractive processes provide a new path to modify such nanoarchitecture and its optical property. Distinct from previous studies on the optical property of the Morpho wing structure, this study provides additional experimental evidence for the origination of the optical property of the natural butterfly wing scales. The study also offers a facile approach to generate new 3D nanostructures using butterfly wings as the templates and may lead to simpler structure models for large‐scale man‐made structures than those offered by original butterfly wings.  相似文献   

15.
A phenomenological constitutive law for ferroelectric switching due to multi-axial mechanical and electrical loading of a polycrystalline material is developed. The framework of the law is based on kinematic hardening plasticity theory and has a switching surface in the space of mechanical stress and electric field that determines when non-linear response is possible. The size and shape of the switching surface in a modified electric field space remains fixed during non-linear behavior but its center moves around and thus is controlled by a kinematical hardening process. In general, the remanent polarization and the remanent strain are used as the internal variables that control how the center of the switching surface moves. However, the form presented in this paper has a one-to-one relationship between the remanent strain and the remanent polarization, simplifying the constitutive law and allowing remanent polarization to be used as the only internal variable controlling the kinematic effects. The constitutive law successfully reproduces hysteresis and butterfly loops for ferroelectric ceramics. The hysteresis and butterfly loops respond appropriately to the application of a fixed compressive stress parallel to the electric field. In addition, the law successfully handles remanent polarization rotation due to the application of electric field at an angle to the polarization direction.  相似文献   

16.
An amphiphilic compound such as a surfactant molecule is a very simple molecule. Yet, when dissolved in water, it spontaneously self-assembles into a multitude of micellar structures such as globules, rods, disks, and vesicles. Even in dilute solutions containing only about 1 % of surfactant, these primary structures can organize themselves on a macroscopic scale so that the whole system in a test tube can be completely ordered. Such systems can have very remarkable macroscopic properties, for example, a yield stress, complex fluid behavior, or iridescence under illumination. The shape of the micellar structures is always determined by the area a that a surfactant molecule occupies at a micellar or bulk interphase. This area can be controlled or tuned by the mixing ratio X between surfactants or between surfactants and cosurfactants. The different assemblies which then result with the variation of X are discussed, together with the macroscopic properties of the systems and some applications where these properties are of use.  相似文献   

17.
Polypyrrole (PPy) with photonic crystal structures were synthesized from Morpho butterfly wings using a two-step templating process. In the first step photonic crystal SiO2 butterfly wings were synthesized from Morpho butterfly wings and in the second step the SiO2 butterfly wings were used as templates for the replication of PPy butterfly wings using an in situ polymerization method. The SiO2 templates were then removed from the PPy butterfly wings using a HF solution. The hierarchical structures down to the nanometer level, especially the photonic crystal structures, were retained in the final PPy replicas, as evidenced directly by field-emission scanning electron microscope (FE-SEM) and transmission electron microscopy (TEM). The optical properties of the resultant PPy replicas were investigated using reflectance spectroscopy and the PPy replicas exhibit brilliant color due to Bragg diffraction through its ordered periodic structures. The preliminary biosensing application was investigated and it was found that the PPy replicas showed a much higher biological activity compared with PPy powders through their response to dopamine (DA), probably due to the hierarchical structures as well as controlled porosity inherited from Morpho butterfly wings. It is expected that our strategy will open up new avenues for the synthesis of functional polymers with photonic crystal structures, which may form applications as biosensors.  相似文献   

18.
Coronas are simulated in color by use of the Mie scattering theory of light by small droplets through clouds of finite optical thickness embedded in a Rayleigh scattering atmosphere. The primary factors that affect color, visibility, and number of rings of coronas are droplet size, width of the size distribution, and cloud optical thickness. The color sequence of coronas and iridescence varies when the droplet radius is smaller than approximately 6-microm. As radius increases to approximately 3.5 microm, new color bands appear at the center of the corona and fade as they move outward. As the radius continues to increase to approximately 6 microm, successively more inner rings become fixed in the manner described by classical diffraction theory, while outer rings continue their outward migration. Wave clouds or rippled cloud segments produce the brightest and most vivid multiple ringed coronas and iridescence because their integrated dropsize distributions along sunbeams are much narrower than in convective or stratiform clouds. The visibility of coronas and the appearance of the background sky vary with cloud optical depth tau. First the corona becomes visible as a white aureole in a blue sky when tau approximately 0.001. Color purity then rapidly increases to an almost flat maximum in the range 0.05 < or = tau < or = 0.5 and then decreases, so coronas are almost completely washed out by a bright gray background when tau > or = 4.  相似文献   

19.
Ding Y  Xu S  Zhang Y  Wang AC  Wang MH  Xiu Y  Wong CP  Wang ZL 《Nanotechnology》2008,19(35):355708
Although butterfly wings and water strider legs have an anti-wetting property, their working conditions are quite different. Water striders, for example, live in a wet environment and their legs need to support their weight and bear the high pressure during motion. In this work, we have focused on the importance of the surface geometrical structures in determining their performance. We have applied an atomic layer deposition technique to coat the surfaces of both butterfly wings and water strider legs with a uniform 30?nm thick hydrophilic Al(2)O(3) film. By keeping the surface material the same, we have studied the effect of different surface roughness/structure on their hydrophobic property. After the surface coating, the butterfly wings changed to become hydrophilic, while the water strider legs still remained super-hydrophobic. We suggest that the super-hydrophobic property of the water strider is due to the special shape of the long inclining spindly cone-shaped setae at the surface. The roughness in the surface can enhance the natural tendency to be hydrophobic or hydrophilic, while the roughness in the normal direction of the surface is favorable for forming a composite interface.  相似文献   

20.
为了研究多孔蝴蝶形钢板剪力墙的抗震性能,对4个足尺多孔蝴蝶形钢板剪力墙试件进行了低周反复加载试验。在蝴蝶杆腰宽比控制在0.4的前提下,研究了钢板厚度和开孔率对多孔蝴蝶形钢板剪力墙滞回性能、承载力和耗能性能的影响。试验结果表明:多孔蝴蝶形钢板剪力墙具有良好的抗震性能,是一种较理想的抗侧力构件和耗能构件;多孔蝴蝶形钢板剪力墙的最终破坏模式为钢板最外侧蝴蝶杆端部撕裂;随着钢板墙厚度的增大和钢板开孔率的减小,试件的抗侧刚度及承载力增大,耗能量增多。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号