首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
N‐acetylated chitosans (NACs) with different degrees of N‐acetylation (DAs) were enzymatically depolymerized at pH 5.1 and 40 °C, and the molecular weight distributions (MWDs) of the depolymerized NACs were then measured by size exclusion chromatography and were fitted by the log‐normal distribution function with two distribution parameters, β and M0. We discuss also the time‐evolution of the distribution parameters derived from the experimentally obtained MWD as well as the effects of experimental conditions, such as DA and initial NAC concentration (S0), on the distribution parameters. Copyright © 2003 Society of Chemical Industry  相似文献   

2.
Turner syndrome (gonadal dysgenesis with short stature and sterility) is characterized by chromosomal karyotype 45,X in 50% of cases or by mosaicism (45,X/46,XX and 45,X/46,XY) in 30–40% or X structural defects (deletions, long arm isochromosome, ring chromosome). When mosaic Turner syndrome (TS) occurs with a Y chromosome, there may be ambiguous genitalia. Duchenne muscular dystrophy (DMD) is an inherited neuromuscular disease with an X-Linked recessive pattern of inheritance that predominantly affects males, while females are usually asymptomatic. DMD has also been observed in groups of females affected by TS, not homozygous for the mutation. Here, we report a case of an Indian neonate born with ambiguous genitalia diagnosed prenatally by ultrasound who had a karyotype of 45,X/46,XY and who also had Duchenne muscular dystrophy caused by a de novo mutation in the DMD gene. Physical examination was normal without the typical dysmorphic features of TS with the exception of the genitourinary system showing ambiguous genitalia. Gender was assigned as female. At the age of three years, she had increasing difficulty walking, running, jumping and climbing stairs, proximal upper and lower extremity muscle weakness and a positive Gowers’ sign. In addition, the serum creatine kinase (CK) value was over 30X the upper limit of normal. This study shows that DMD can occur in females with TS having 45,X/46,XY mosaicism and that this coexistence should be considered in women affected by TS who start to develop potential typical symptoms such as motor or developmental delay.  相似文献   

3.
The enzymatic reactivity of a series of benzo[1,2-c]1,2,5-oxadiazole N-oxides (benzofuroxans; BFXs) towards mammalian single-electron transferring NADPH:cytochrome P-450 reductase (P-450R) and two-electron (hydride) transferring NAD(P)H:quinone oxidoreductase (NQO1) was examined in this work. Since the =N+ (→O)O moiety of furoxan fragments of BFXs bears some similarity to the aromatic nitro-group, the reactivity of BFXs was compared to that of nitro-aromatic compounds (NACs) whose reduction mechanisms by these and other related flavoenzymes have been extensively investigated. The reduction of BFXs by both P-450R and NQO1 was accompanied by O2 uptake, which was much lower than the NADPH oxidation rate; except for annelated BFXs, whose reduction was followed by the production of peroxide. In order to analyze the possible quantitative structure-activity relationships (QSARs) of the enzymatic reactivity of the compounds, their electron-accepting potency and other reactivity indices were assessed by quantum mechanical methods. In P-450R-catalyzed reactions, both BFXs and NACs showed the same reactivity dependence on their electron-accepting potency which might be consistent with an “outer sphere” electron transfer mechanism. In NQO1-catalyzed two-electron (hydride) transferring reactions, BFXs acted as more efficient substrates than NACs, and the reduction efficacy of BFXs by NQO1 was in general higher than by single-electron transferring P-450R. In NQO1-catalyzed reactions, QSARs obtained showed that the reduction efficacy of BFXs, as well as that of NACs, was determined by their electron-accepting potency and could be influenced by their binding mode in the active center of NQO1 and by their global softness as their electronic characteristic. The reductive conversion of benzofuroxan by both flavoenzymes yielded the same reduction product of benzofuroxan, 2,3-diaminophenazine, with the formation of o-benzoquinone dioxime as a putative primary reductive intermediate, which undergoes a further reduction process. Overall, the data obtained show that by contrast to NACs, the flavoenzyme-catalyzed reduction of BFXs is unlikely to initiate their redox-cycling, which may argue for a minor role of the redox-cycling-type action in the cytotoxicity of BFXs.  相似文献   

4.
Nitroaromatic compounds (NACs) are ubiquitous in the environment due to their extensive industrial applications. The recalcitrance of NACs causes their arduous degradation, subsequently bringing about potential threats to human health and environmental safety. The problem of how to effectively predict the toxicity of NACs has drawn public concern over time. Quantitative structure–activity relationship (QSAR) is introduced as a cost-effective tool to quantitatively predict the toxicity of toxicants. Both OECD (Organization for Economic Co-operation and Development) and REACH (Registration, Evaluation and Authorization of Chemicals) legislation have promoted the use of QSAR as it can significantly reduce living animal testing. Although numerous QSAR studies have been conducted to evaluate the toxicity of NACs, systematic reviews related to the QSAR modeling of NACs toxicity are less reported. The purpose of this review is to provide a thorough summary of recent QSAR studies on the toxic effects of NACs according to the corresponding classes of toxic response endpoints.  相似文献   

5.
The MP2 and DFT/B3LYP methods at 6-311++G(d,p) and aug-cc-pdz basis sets have been used to probe the origin of relative stability preference for eclipsed acetaldehyde over its bisected counterpart. A relative energy stability range of 1.02 to 1.20 kcal/mol, in favor of the eclipsed conformer, was found and discussed. An NBO study at these chemistry levels complemented these findings and assigned the eclipsed acetaldehyde preference mainly to the vicinal antiperiplanar hyperconjugative interactions. The tautomeric interconversion between the more stable eclipsed acetaldehyde and vinyl alcohol has been achieved through a four-membered ring transition state (TS). The obtained barrier heights and relative stabilities of eclipsed acetaldehyde and the two conformers of vinyl alchol at these model chemistries have been estimated and discussed.  相似文献   

6.
7.
Starch/polyvinyl alcohol (PVA) blend films were prepared by using corn starch, polyvinyl alcohol (PVA), glycerol (GL), and citric acid (CA) as additives and glutaraldehyde (GLU) as crosslinking agent for the mixing process. The additives, drying temperature, and the influence of crosslinker of films on the properties of the films were investigated. The mechanical properties, tensile strength (TS), elongation at break (% E), degree of swelling (DS), and solubility (S) of starch/PVA blend film were examined adding GL and CA as additives. At all measurement results, except for DS, the film adding CA was better than GL because hydrogen bonding at the presence of CA with hydroxyl group and carboxyl group increased the inter/intramolecular interaction between starch, PVA, and additives. CA improves the properties of starch/PVA blend film compared with GL. TS, % E, DS, and S of film adding GLU as crosslinking agent were examined. With increasing GLU contents, TS increases but % E, DS, and S value of GL‐added and CA‐added films decrease. When the film was dried at low temperature, the physical properties of the films were clearly improved because the hydrogen bonding was activated at low temperature. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 2554–2560, 2006  相似文献   

8.
The NaOH‐, fibrillation‐, and cellulase‐ treated Tencel fabrics were characterized by weight loss, tensile strength, scanning electron microscopy (SEM) analysis, X‐ray diffraction analysis, measurements of moisture regain and dye adsorption (K/S value), degree of polymerization (DP), and copper number. Weight loss increased and tensile strength decreased with increase in cellulase concentration and treatment time. At a similar weight loss, tensile strength retentions of the NaOH‐pretreated samples were better than those of the NaOH‐nontreated samples because of more uniform enzymatic hydrolysis. SEM photographs showed more surface peeling and interfibrillar splitting as enzymatic hydrolysis progressed. Crystalline structure and degree of crystallinity were not much changed by cellulase treatment. As enzymatic hydrolysis progressed, moisture regain and K/S value increased slightly due to increase of specific surface area by fibrils. DP initially decreased as enzymatic hydrolysis progressed and then leveled off. Copper number increased largely at an initial stage of degradation and then decreased gradually. The NaOH‐pretreated samples showed higher degree of crystallinity, DP, moisture regain, and K/S value, but lower copper number than the NaOH‐nontreated ones. These results were attributed to extraction of short chain molecules in the amorphous region during NaOH pretreatment and change of amorphous region into the open‐up structure. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 76: 1644–1651, 2000  相似文献   

9.
In this work, nitrogen-doped porous carbons (NACs) were fabricated as an adsorbent by urea modification and KOH activation. The CO2 adsorption mechanism for the NACs was then explored. The NACs are found to present a large specific surface area (1920.72– 3078.99 m2·g1) and high micropore percentage (61.60%–76.23%). Under a pressure of 1 bar, sample NAC-650-650 shows the highest CO2 adsorption capacity up to 5.96 and 3.92 mmol·g1 at 0 and 25 °C, respectively. In addition, the CO2/N2 selectivity of NAC-650-650 is 79.93, much higher than the value of 49.77 obtained for the nonnitrogen-doped carbon AC-650-650. The CO2 adsorption capacity of the NAC-650-650 sample maintains over 97% after ten cycles. Analysis of the results show that the CO2 capacity of the NACs has a linear correlation (R2 = 0.9633) with the cumulative pore volume for a pore size less than 1.02 nm. The presence of nitrogen and oxygen enhances the CO2/N2 selectivity, and pyrrole-N and hydroxy groups contribute more to the CO2 adsorption. In situ Fourier transform infrared spectra analysis indicates that CO2 is adsorbed onto the NACs as a gas. Furthermore, the physical adsorption mechanism is confirmed by adsorption kinetic models and the isosteric heat, and it is found to be controlled by CO2 diffusion. The CO2 adsorption kinetics for NACs at room temperature and in pure CO2 is in accordance with the pseudo-first-order model and Avramís fractional-order kinetic model.  相似文献   

10.
X-Ray crystal structures of Lactobacillus casei thymidylate synthase (TS) mutant complexes of E60D with dUMP, and E60Q with dUMP or FdUMP, as well as ternary complexes with folate analog inhibitor CB3717, are described. The structures we report address the decrease in rate of formation of ternary complexes in the E60 mutants. Structures of ternary complexes of L.casei TS mimic ligand-bound TS just prior to covalent bond formation between ligands and protein. Ternary complex structures of L.casei TS E60Q show the ligands are not optimally aligned for making the necessary covalent bonds. Since CB3717 is an analog of the open, activated form of the cofactor, these structures suggest that the slow rate of ternary complex formation in E60 mutants is at least partly the result of impaired alignment of ligands in the active site after binding and activation of the cofactor. Binary complexes of TS E60Q and TS E60D with substrate (dUMP) show no change in dUMP position or occupancy. These results are consistent with the fact that Kd(dUMP) and Km(dUMP) are almost the same, and the rates of folate-independent debromination of 5-bromo-dUMP are even higher than for wild type TS.   相似文献   

11.
Structure and properties of commercially available fully oriented thermoplastic and thermotropic polyester fibers have been investigated using optical birefringence, infrared spectroscopy, wide‐angle X‐ray diffraction and tensile testing methods. The effect of the replacement of p‐phenylene ring in poly(ethylene terephthalate) (PET) with stiffer and bulkier naphthalene ring in Poly(ethylene 2,6‐naphthalate) (PEN) structure to result in an enhanced birefringence and tensile modulus values is shown. There exists a similar case with the replacement of linear flexible ethylene units in PET and PEN fibers with fully aromatic rigid rings in thermotropic polyesters. Infrared spectroscopy is used in the determination of crystallinity values through the estimation of trans conformer contents in the crystalline phase. The analysis of results obtained from infrared spectroscopy data of highly oriented PET and PEN fibers suggests that trans conformers in the crystalline phase are more highly oriented than gauche conformers in the amorphous phase. Analysis of X‐ray diffraction traces and infrared spectra shows the presence of polymorphic structure consisting of α‐ and β‐phase structures in the fully oriented PEN fiber. The results suggest that the trans conformers in the β‐phase is more highly oriented than the α‐phase. X‐ray analysis of Vectran® MK fiber suggests a lateral organization arising from high temperature modification of poly(p‐oxybenzoate) structure, whereas the structure of Vectran® HS fiber contains regions adopting lateral chain packing similar to the room temperature modification of poly(p‐oxybenzoate). Both fibers are shown by X‐ray diffraction and infrared analyses to consist of predominantly oriented noncrystalline (63–64%) structure together with smaller proportion of oriented crystalline (22–24%) and unoriented noncrystalline (12–15%) structures. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 142–160, 2006  相似文献   

12.
Summary Using a blend of anionic and nonionic surfactants, the emulsion polymerization of n-butyl acry late was conducted at 50°C. The total particle surface area per cm2 of aqueous solution (TS) at 90% conversion was found to be proportional to the amount of surfactant (E) used in the single-surfactant systems. A relationship close to additive exists between the TS value and the E of each surfactant used. For most of the recipes, the latex particles were uniform throughout the polymerization. However, in some recipes, the particle number varied during the polymerization.  相似文献   

13.
Inflammasome activation is one of the first steps in initiating innate immune responses. In this work, we studied the activation of inflammasomes in the airways of critically ill COVID-19 patients and the effects of N-acetylcysteine (NAC) on inflammasomes. Tracheal biopsies were obtained from critically ill patients without COVID-19 and no respiratory disease (control, n = 32), SARS-CoV-2 B.1 variant (n = 31), and B.1.1.7 VOC alpha variant (n = 20) patients. Gene expression and protein expression were measured by RT-qPCR and immunohistochemistry. Macrophages and bronchial epithelial cells were stimulated with different S, E, M, and N SARS-CoV-2 recombinant proteins in the presence or absence of NAC. NLRP3 inflammasome complex was over-expressed and activated in the COVID-19 B.1.1.7 VOC variant and associated with systemic inflammation and 28-day mortality. TLR2/MyD88 and redox NOX4/Nrf2 ratio were also over-expressed in the COVID-19 B.1.1.7 VOC variant. The combination of S-E-M SARS-CoV-2 recombinant proteins increased cytokine release in macrophages and bronchial epithelial cells through the activation of TLR2. NAC inhibited SARS-CoV-2 mosaic (S-E-M)-induced cytokine release and inflammasome activation. In summary, inflammasome is over-activated in severe COVID-19 and increased in B.1.1.7 VOC variant. In addition, NAC can reduce inflammasome activation induced by SARS-CoV-2 in vitro, which may be of potential translational value in COVID-19 patients.  相似文献   

14.
Titania-silica (TS(X), X=19, 26, 55, 70, and 79) supports with different titania content (X, wt%) were prepared by a precipitation method. NiMo/TS(X) catalysts prepared by an incipient wetness method were then applied to the production of middle distillate through hydrocracking of paraffin wax. Successful formation of NiMo/TS(X) (X=19, 26, 55, 70, and 79) catalysts was confirmed by ICP-AES and XRD measurements. NH3-TPD experiments were conducted to measure the acid property of NiMo/TS(X) (X=19, 26, 55, 70, and 79) catalysts. It was revealed that acidity of the catalyst played an important role in determining the catalytic performance in the hydrocracking of paraffin wax. Conversion of paraffin wax increased with increasing acidity of the catalyst, while yield for middle distillate showed a volcano-shaped curve with respect to acidity of the catalyst. Among the catalysts tested, NiMo/TS(26) retaining moderate acidity showed the highest yield for middle distillate.  相似文献   

15.
To remove the nitro aromatic compounds (NACs) and SO32? from distillate of 2,4,6‐trinitrotoluene (TNT) red water, the carboxylated and aminated polystyrene (PSt) microspheres were used as adsorbents. GC‐MS and HPLC analysis were used to determine the types and concentrations of NACs before and after adsorption. The carboxylated PSt, which was prepared by modifying PSt with phthlandione (PA), could remove the neutral NACs including 2,6‐dinitrotoluene (2,6‐DNT), 2,4‐dinitrotoluene (2,4‐DNT), 1,3,5‐trinitrobenzene (1,3,5‐TNB), and 2,4,6‐trinitrotoluene (2,4,6‐TNT), with the acid 2,4‐dinitrophenol (2,4‐DNP) and SO32? remained in the distillate. The aminated PSt that was synthesized by activating PSt with chloroacetyl chloride follow by reaction with 1,2‐ethanediamine (EDA) could remove all the NACs and SO32?. The results suggested that EDA‐PSt adsorbed the NACs though multimode interactions, i.e., hydrogen bond and electrostatic attraction. After adsorption using EDA‐PSt, chemical oxygen demand (COD) was reduced from 86.1 to 11.2 mg L?1, and a colorless, transparent, and nontoxic solution with neutral pH value was obtained. Five grams of EDA‐PSt could purify 1600 cm3 of distillate of TNT red water, and the adsorbents could be recycled by elution with methanol to desorb the neutral NACs followed by elution with 0.1 mol L?1 NaOH to wash off 2,4‐DNP and SO32?. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

16.
Polyaniline was synthesized in the presence of tanninsulfonic acid to yield a product tanninsulfonic acid‐doped polyaniline (TANI‐PANI) that is water‐dispersible. Several samples ranging from 0 to 70% tanninsulfonate (TS) were prepared. These samples were then evaluated for differences in dispersibility, particle size, and conductivity. As the percent of TS in the samples was increased, the water‐dispersibility of the TANI‐PANI also increased. The particle size of the samples as well as the conductivity of the samples decreased with increasing percentages of TS in the samples. After extensive washings, however, the conductivity remained fairly constant (~0.5 S/cm) regardless of the amount of TS in the samples. Additionally, elemental analysis, TGA, and IR data were used to demonstrate that the TS may be grafted to polyaniline during the synthesis of TANI‐PANI. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 2113–2119, 2007  相似文献   

17.
A novel amino‐functionalized polystyrene copolymer (PS‐NH2) was designed and synthesized with styrene and 4‐vinylbenzyl amine. Additionally, an amino modified glass (G‐NH2) was obtained as a carrier. (PS‐NH2/pyrene)/G‐NH2 fluorescent nanofibrous membrane [named (PS‐NH2/pyrene)/G‐NH2] was designed and prepared via electrospinning technique to detect representative saturated nitroaromatic (NAC) explosive vapor. The (PS‐NH2/pyrene)/G‐NH2 showed highly fluorescence stability in ambient condition and further displayed a high quenching efficiency of 70.9% toward trinitrotoluene (TNT) vapor (~10 ppb) with an exposure time of 150 s at room temperature. The abundance of amino groups could effectively adsorb NACs and the binding of electron‐deficient NACs to the amino groups on the (PS‐NH2/pyrene)/G‐NH2 surface led to the formation of charge‐transfer complexes. The quenching constant (KSV) to TNT was obtained to be 1.07 × 1011 mL/g in gaseous phase with a limit of detection up to 2.76 × 10?13g/mL. Importantly, the (PS‐NH2/pyrene)/G‐NH2 showed notable selectivity toward TNT and 2,4‐dinitrotoluene vapors. Straightforwardly, the colorimetric sensing performance can be visualized by naked eye with a color change for detecting of different vapor phase NACs explosives. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46708  相似文献   

18.
The effective design of catalytic antibodies represents a major conceptual and practical challenge. It is implicitly assumed that a proper transition state analogue (TSA) can elicit a catalytic antibody (CA) that will catalyze the given reaction in a similar way to an enzyme that would evolve (or was evolved) to catalyze this reaction. However, in most cases it was found that the TSA used produced CAs with relatively low rate enhancement as compared to the corresponding enzymes, when these exist. The present work explores the origin of this problem, by developing two approaches that examine the similarity of the TSA and the corresponding transition state (TS). These analyses are used to assess the proficiency of the CA generated by the given TSA. Both approaches focus on electrostatic effects that have been found to play a major role in enzymatic reactions. The first method uses molecular interaction potentials to look for the similarity between the TSA and the TS and, in principle, to help in designing new haptens by using 3D quantitative structure-activity relationships. The second and more quantitative approach generates a grid of Langevin dipoles, which are polarized by the TSA, and then uses the grid to bind the TS. Comparison of the resulting binding energy with the binding energy of the TS to the grid that was polarized by the TS provides an estimate of the proficiency of the given CA. Our methods are used in examining the origin of the difference between the catalytic power of the 1F7 CA and chorismate mutase. It is demonstrated that the relatively small changes in charge and structure between the TS and TSA are sufficient to account for the difference in proficiency between the CA and the enzyme. Apparently the environment that was preorganized to stabilize the TSA charge distribution does not provide a sufficient stabilization to the TS. The general implications of our findings and the difficulties in designing a perfect TSA are discussed. Finally, the possible use of our approach in screening for an optimal TSA is pointed out.  相似文献   

19.
Arachidonic acid lipoxygenases (ALOXs) have been suggested to function as monomeric enzymes, but more recent data on rabbit ALOX15 indicated that there is a dynamic monomer-dimer equilibrium in aqueous solution. In the presence of an active site ligand (the ALOX15 inhibitor RS7) rabbit ALOX15 was crystalized as heterodimer and the X-ray coordinates of the two monomers within the dimer exhibit subtle structural differences. Using native polyacrylamide electrophoresis, we here observed that highly purified and predominantly monomeric rabbit ALOX15 and human ALOX15B are present in two conformers with distinct electrophoretic mobilities. In silico docking studies, molecular dynamics simulations, site directed mutagenesis experiments and kinetic measurements suggested that in aqueous solutions the two enzymes exhibit motional flexibility, which may impact the enzymatic properties.  相似文献   

20.
This paper describes the relationship of viscosity with the crystallization process in a binary system formed by sasame oil and different concentrations of tripalmitin (TP) and tristerian (TS) (0.0, 0.032, 0.098, 0.18, 0.26, 0.344 g/dL). The behavior of the reduced viscosity (ηred) indicated that TP and TS affected the native bilayer lamellar organization of sesame oil triacylglycerides. The behaviour of ηred at TP or TS concentrations ≤0.098 g/dL suggested that, as a result of intermolecular interactions between the saturated triacylglyceride and the unsaturated triacylglycerides of sesame oil, the oil solution developed lamellar structures with a smaller size than the native structures in sesame oil. At TP or TS concentrations >0.098 g/dL, the behavior of ηred indicated that TP or TS segregated out of the lamellar structure as the temperature was decreased. The kinetics of the segregation phenomenon was a function of the concentration of saturated triacylglyceride and the type of triacylglyceride (i.e., TP or TS), and was favored by an increase in the shear rate. In all situations, the temperature of nucleation was achieved when ηred=0, which may represent the point at which the interfacial energy between sesame oil and the developing nuclei achieved its maximum value. The higher the intermolecular interaction between the TP or TS and the triacylglyceride structure of the sesame oil, the lower the temperature at which ηred=0 in the oil solutions. As a result, the diffusion term (i.e., viscosity of the liquid phase) became a limiting factor for crystal growth rate, especially at TP and TS concentrations ≤0.18 g/dL.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号