首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Several receiver structures for linearly modulated signals are proposed for time-varying frequency-selective channels. Their channel estimators explicitly model the time variation of the channel taps via polynomials. These structures are constructed from the following building blocks: (i) sliding or fixed block channel estimators; (ii) maximum likelihood sequence detectors (MLSDs) or decision feedback equalizers (DFEs); and (iii) single or multiple passes. A sliding window channel estimator uses a window of received samples to estimate the channel taps within or at the end of the window. Every symbol period, the window of samples is slid along another symbol period, and a new estimate is calculated. A fixed block channel estimator uses all received samples to estimate the channel taps throughout the packet, all at once. A single pass receiver estimates the channel and detects data once only. A multipass receiver performs channel estimation and data detection repetitively. The effect of the training symbol positions on the performance of the block multipass approach is studied. The bit error rate (BER) performance of the MLSD structures is characterized through simulation and analysis. The proposed receivers offer a range of performance/complexity tradeoffs, but all are well suited to time-varying channels. In fast fading channels, as the signal-to-noise ratio (SNR) increases, they begin to significantly outperform the per-survivor processing-based MLSD receivers which employ the least mean-squares (LMS) algorithm for channel estimation  相似文献   

2.
This paper examines the transmission of binary data signals over channels which contain quadratic nonlinearities and additive Gaussian noise. We consider the case where the channel is nonlinear with memory and where the signal is passed through an input receiver filter and sampled once every signaling interval. The samples are represented by a discrete Volterra series and a special case where the received sample contains a single quadratic distortion term is examined. The optimum (maximum-likelihood) receiver (processor) is derived and upper and lower performance bounds obtained. The performance of a practical, suboptimum receiver is examined by means of computer simulation and is shown to be very close to the lower bound of the optimum receiver. Next we examine the case where the received sample contains two quadratic distortion terms. Again, upper and lower performance bounds are obtained. The performance of a suboptimum receiver which uses nonlinear decision feedback is evaluated by computer simulation. Its performance is shown to be superior to an optimum linear receiver.  相似文献   

3.
A deterministic algorithm was proposed for channel identification in block communication systems. The method assumed that the channel has a finite impulse response (FIR) and that null guard intervals of length greater than the channel order are inserted between successive blocks to prevent interblock interference and allow block synchronization. In the absence of noise, the algorithm provides error-free channel estimates, using a finite number of received data, without requiring training sequences and without imposing a restriction neither on the channel, except for finite order and time invariance, nor on the symbol constellation. Using small perturbation analysis, we derive approximate expressions of the estimated channel covariance matrix, which are used to quantify the resilience of the estimation algorithm to additive noise and channel fluctuations. Specifically, we consider channel fluctuations induced by transmitter/receiver relative motion, asynchronism, and oscillators' phase noise. We also compare the channel estimation accuracy with the Cramer-Rao bound (CRB) and prove that our estimation method is statistically efficient at practical SNR values for any data block length. Finally, we validate our theoretical analysis with simulations and compare our transmission scheme with an alternative system using training sequences for channel estimation  相似文献   

4.
This paper describes a spread-spectrum downlink RAKE receiver that computes data detection in the frequency domain. We assume a pilot signal is transmitted with data signals for channel sounding. The pilot signal does not degrade the receiver bit error rate (BER) performance because the receiver estimates the pilot signal and subtracts the estimated pilot signal from the received signal before data detection. A spreading code matched filter, a channel matched filter, and a sounding receiver are implemented by fast Fourier transform (FFT)-based matched filtering and integrated in a unified architecture. Monte Carlo simulation is used to evaluate the receiver BER performance in both a static channel and a mobile radio channel. Simulation results show that the RAKE receiver performs well in both kinds of channels  相似文献   

5.
Energy detection of frequency-shift keying (FSK) signals is the optimum noncoherent detection technique yielding a minimum bit-error rate (BER) on the additive white Gaussian noise channel. It is usually used when carrier phase estimation is difficult. When FSK signals are passed through a frequency-selective multipath fading channel, the multipath delay in the channel results in a multitone waveform being received during each signaling interval. An effective practical sequence estimation receiver for this situation is proposed. It makes use of energy detectors followed by a Viterbi (1979) or sequence estimator that uses an energy difference metric. Statistical properties of the detection variable are derived. Analytical upper and lower bounds on the BER are derived and the results compared with computer simulations to show the effectiveness of the technique.  相似文献   

6.
We propose a reduced complexity antenna diversity combiner-equalizer receiver structure to combat multipath fading in cellular mobile radio (CMR) communications. The technique utilizes block adaptation based on interpolated channel estimates and linear or decision feedback equalization. The receiver offers complexity reduction relative to previously proposed block adaptation methods without sacrificing performance  相似文献   

7.
We address the problems of channel estimation and optimal training sequence design for multiple-input multiple-output systems over flat fading channels in the presence of colored interference. In practice, knowledge of the unknown channel is often obtained by sending known training symbols to the receiver. During the training period, we obtain the best linear unbiased estimates of the channel parameters based on the received training block. We determine the optimal training sequence set that minimizes the mean square error of the channel estimator under a total transmit power constraint. In order to obtain the advantage of the optimal training sequence design, long-term statistics of the interference correlation are needed at the transmitter. Hence, this information needs to be estimated at the receiver and fed back to the transmitter. Obviously it is desirable that only a minimal amount of information needs to be fed back from the receiver to gain the advantage in reducing the estimation error of the short-term channel fading parameters. We develop such a feedback strategy in this paper.  相似文献   

8.
Our goal in this paper is to study the effect of the receiver structure upon the achievable data rates. We consider transmission of linearly precoded data symbols over a frequency selective block fading multiple input multiple output (MIMO) wireless channel. To encompass a number of transmission schemes, we study this problem utilizing affine precoding, which is a unified model of linearly precoded data symbols with superimposed training. We focus on Bayesian receivers that estimate both the unknown fading coefficients and the data symbols. The receiver may adopt either of the following strategies to retrieve the data symbols: strategy (i) the receiver obtains joint Bayesian channel and symbol estimates, strategy, (ii) the receiver obtains a Bayesian channel estimate initially and the channel measurement is utilized to estimate the data symbols. For both strategies, we provide lower bounds on the mutual information between the data symbols and their corresponding estimates, and we relate these bounds to the symbol Cramer-Rao bound (CRB) matrices. In contrast to strategy (ii), for strategy (i) the lower bound does not depend on either the channel estimate or the covariance of the channel estimation error. For strategy (ii) we show that asymptotically (as the size of the transmission block grows) there is no loss of information after the maximum a posteriori (MAP) estimate of Gaussian symbols. We also provide guidelines to design affine precoders that maximize the derived lower bounds under the total average transmit power constraint.  相似文献   

9.
In this paper, a new computationally simple approach to blind decoding of orthogonal space-time block codes (OSTBCs) is proposed. Using specific properties of OSTBCs, the authors' approach estimates the channel matrix in a closed form and in a fully blind fashion. This channel estimate is then used in the maximum-likelihood (ML) receiver to decode the information symbols. The proposed estimation technique provides consistent channel estimates, and, as a result, the performance of the authors' blind ML receiver approaches that of the coherent ML receiver, which exploits the exact channel state information (CSI). Simulation results demonstrate the performance improvements achieved by the proposed blind decoding algorithm relative to the popular differential space-time modulation scheme.  相似文献   

10.
A transmit–receive diversity system in correlated Rayleigh fading in which the receiver estimates the channel through pilot symbols, and feeds this information back to the transmitter through a feedback path, is considered. The imperfect channel state information (CSI) is used by the transmitter to obtain the transmit weight vector for data transmission. The optimum receiver in the maximum-likelihood (ML) sense obtained from the conditional distribution of the received signal vector, conditioned on the imperfect CSI and the transmit weight vector, is derived for the system. For the case of $M$-ary phase-shift keying (MPSK), an analytical expression for the conditional symbol error probability (SEP), conditioned on the channel estimate and the transmit weight vector, is obtained, with the transmit weight vector chosen to minimize this conditional SEP. For the receive-only and transmit-only correlation scenarios with ill-conditioned eigenvalues of the receive and transmit covariance matrices (that is, some of the eigenvalues are very small), we derive expressions for the diversity gain. Numerical results are presented to compare the performance of our receiver with that of a conventional receiver in case of exponentially correlated fading. These results show that the optimum receiver typically has about a 0.5-dB gain over a conventional receiver when the correlation coefficient exceeds 0.5 and the number of receive antennas is much larger than the number of transmit antennas.   相似文献   

11.
MIMO channels are often assumed to be constant over a block or packet. This assumption of block stationarity is valid for many fixed wireless scenarios. However, for communications in a mobile environment, the stationarity assumption will result in considerable performance degradation. In this paper, we focus on a new channel estimation technique for Turbo coded MIMO systems using OFDM. In the proposed MIMO–OFDM system, pilots are placed on selected subcarriers and used by a pair of Kalman filter (KF) channel estimators at the receiver. The KF channel estimates are then utilized by a MIMO–OFDM soft data detector based on the computationally efficient QRD-M algorithm. The soft detector output is fed back to the Kalman filters to iteratively improve the channel estimates. The extrinsic information generated by the Turbo decoder is also used as a priori information for the soft data detector. The overall receiver thus combines MIMO data detection, KF-based channel estimation, and Turbo decoding in a joint iterative structure yielding computational efficiency and improved bit-error rate (BER) performance. Parts of this paper were presented at ICC’2005, Seoul, Korea. This work was supported in part by NSF Grant No. CCF-0429596. This work was done when he was with the Nokia Research Center in Dallas, USA.  相似文献   

12.
We introduce an iterative joint channel and data estimation receiver that exploits both the power of pilot-symbol assisted modulation (PSAM) and turbo coding for fading channels. The key innovation is a low-complexity soft channel estimator which divides a processing block into overlapped cells and performs maximum a posteriori (MAP) sequence estimation and MMSE filtering based on the received signal and extrinsic information delivered by the soft channel decoder. Simulation results show that for turbo-coded PSAM systems under time-variant fading the proposed receiver offers significant performance gains over a non-iterative receiver and two other cancellation schemes  相似文献   

13.
We consider here a new approach to PSK signal detection over a slow nonselective Rayleigh fading channel which does not require a carrier recovery loop. The receiver achieves coherent demodulation by making use of estimates of the quadrature amplitudes of the received PSK signals in its likelihood ratio test. The receiver is assumed to have a memory containing information on the past received signals which enables it to generate the estimates. The error rate of the receiver can be evaluated analytically and computer simulation results are presented to verify the predicted performance.  相似文献   

14.
In time varying channels, symbol recovery for single carrier cyclic prefix (SCCP) systems becomes complicated, because the orthogonality of channel frequency response (CFR) matrix is destroyed. In response, we propose a block turbo equalization algorithm in the time domain for SCCP to cope with channel time variations. In particular, the band structure of the channel time response (CTR) matrix is exploited to reduce the computational complexity of matrix inversion. In order to use this equalization scheme, accurate channel state information (CSI) must be available. Accordingly, we present a doubly selective channel estimation method for SCCP block transmissions with the aid of a Karhunen-Loeve basis expansion model (KL-BEM). In this method, the channel estimates are firstly obtained by using the cyclic prefix (CP) of each block, and then further refined by employing an expectation maximization (EM) based iterative algorithm. Combining the iterative estimator with the proposed equalizer naturally results in a doubly iterative receiver, the performance of which is shown to come close to the performance with perfect CSI.  相似文献   

15.
This paper introduces a blind channel estimation method for a block transmission system using fractional sampling at a receiver. In most digital communication systems, low-pass filters are placed at a transmitter to confine the transmitting waveform to an allocated bandwidth and at a receiver to improve the signal-to-noise (SNR) power ratio. Consequently, if the received waveform is sampled with sufficiently fast rate, the resulting discrete-time signal is band-limited and exhibits a smooth waveform. The method exploits this property for estimating the channel impulse response, via an interpolation formula. The method does not require knowledge of input statistics or the autocorrelation of the received signal. It is free of channel order estimation and thus robust against its overestimation. Moreover, the algorithm is quite efficient because it does not need to compute eigenvalues of a matrix.  相似文献   

16.
成先涛  朱维乐 《通信学报》2006,27(1):109-112
针对多天线冲激无线电超宽带通信系统,提出了一种盲的线性接收机。在不需要信道信息的情况下,可以利用经过预编码的空时分组码给接收信号带来的特定结构,直接得到接收机系数,从而恢复出发送符号。仿真表明,随着用于估计的数据块的增加,盲接收机的性能逐渐接近于相关接收。  相似文献   

17.
A space-time block coded system in a correlated Rayleigh flat fading environment with transmit and receive correlation is considered. The channel state information (CSI) is estimated from a sequence of pilot code vectors which are known to the receiver and transmitted prior to data code transmission. Two receiver structures, namely the optimum receiver in which the estimated CSI is used in the maximum likelihood sense and the joint processing receiver that jointly processes the received data code and the received pilot code vectors, are presented and their equivalence is shown.  相似文献   

18.
该文在MIMO-OFDM系统中提出基于块调制的OFDM算法,降低了循环前缀(CP)所占的系统开销。在每个发射天线,将P个OFDM符号联合调制组帧后共用一个CP,到达接收天线后,接收帧经过分解可得到P个接收数据块,各数据块无相互间干扰。其中第p个接收数据块等于各个发射天线的第p个OFDM符号通过MIMO信道后到达接收天线的和,该文算法与传统MIMO-OFDM系统本质上传输方式相同,因而传输性能也相同,而频带效率则明显提高。  相似文献   

19.
This paper proposes an iterative OFDM millimeterwave receiver employing low-complexity decision-directed phase noise compensation (DD-PNC) to alleviate degradation due to the phase noise. High bit-rate OFDM transceivers based on the single-chip Si RF-CMOS IC technology in the 60-GHz millimeter-wave band have been extensively studied for wireless personal area network (WPAN) systems, and the relatively large phase noise in the phase locked loop (PLL) synthesizer severely degrades transmission performance. The proposed OFDM receiver iterates DD-PNC and decision-directed channel estimation (DDCE) by exploiting the output of the channel decoder. DDPNC estimates the phase noise each sampling time by using the decoder output, and then it removes the estimate from a time-domain received signal. In addition, DDCE estimates a channel impulse response by using the compensated received signal. Computer simulations demonstrate that in the 64QAM modulation with the coding rate of 3/4, the proposed receiver with DD-PNC and DDCE can perfectly remove the phase noise of -85 dBc/Hz at 1 MHz offset, and that it can alleviate the degradation of the channel estimation due to the phase noise.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号