首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The objective of this study was to investigate the influence of emulsifiers, waxes, fat concentration, and processing conditions on the application of wax oleogel to replace solid fat content and create optimal fat structure in ice cream. Ice creams with 10% or 15% fat were formulated with rice bran wax (RBW), candelilla wax (CDW), or carnauba wax (CBW) oleogels, containing 10% wax and 90% high‐oleic sunflower oil. The ice creams were produced using batch or continuous freezing processes. Transmission electron microscopy (TEM) and cryo‐scanning electron microscopy were used to evaluate the microstructure of ice cream and the ultrastructure of oleogel droplets in ice cream mixes. Among the wax oleogels, RBW oleogel had the ability to form and sustain structure in 15% fat ice creams when glycerol monooleate (GMO) was used as the emulsifier. TEM images revealed that the high degree of fat structuring observed in GMO samples was associated with the RBW crystal morphology within the fat droplet, which was characterized by the growth of crystals at the outer edge of the droplet. Continuous freezing improved fat structuring compared to batch freezing. RBW oleogels established better structure compared to CDW or CBW oleogels. These results demonstrate that RBW oleogel has the potential to develop fat structure in ice cream in the presence of GMO and sufficiently high concentrations of oleogel.  相似文献   

2.
3.
The development of structure in ice cream, characterized by its smooth texture and resistance to collapse during melting, depends, in part, on the presence of solid fat during the whipping and freezing steps. The objective of this study was to investigate the potential application of 10% rice bran wax (RBW) oleogel, comprised 90% high‐oleic sunflower oil and 10% RBW, to replace solid fat in ice cream. A commercial blend of 80% saturated mono‐ and diglycerides and 20% polysorbate 80 was used as the emulsifier. Standard ice cream measurements, cryo‐scanning electron microscopy (cryo‐SEM), differential scanning calorimetry (DSC), and transmission electron microscopy (TEM) were used to evaluate the formation of structure in ice cream. RBW oleogel produced higher levels of overrun when compared to a liquid oil ice cream sample, creating a lighter sample with good texture and appearance. However, those results were not associated with higher meltdown resistance. Microscopy revealed larger aggregation of RBW oleogel fat droplets at the air cell interface and distortion of the shape of air cells and fat droplets. Although the RBW oleogel did not develop sufficient structure in ice cream to maintain shape during meltdown when a mono‐ and diglycerides and polysorbate 80 blend was used as the emulsifier, micro‐ and ultrastructure investigations suggested that RBW oleogel did induce formation of a fat globule network in ice cream, suggesting that further optimization could lead to an alternative to saturated fat sources for ice cream applications.  相似文献   

4.
以三级稻米油为基料油,研究了米糠蜡(rice bran wax,RBW)添加量对凝胶油形成特性的影响及凝胶油结晶形成的动力学参数。结果表明:在25℃时,RBW添加量为4%时便可形成凝胶油。随着RBW添加量的增加,凝胶油的硬度明显增加,贮藏30 d后凝胶油硬度变化不显著。凝胶油的固体脂肪含量也随RBW添加量的增加呈增多趋势,凝胶油主要为β′晶体。4%和7%RBW添加量凝胶油晶体为絮状,添加量为10%时凝胶油晶体转变为长枝晶状且密度增大。该凝胶油仅有一个结晶峰,采用Avrami方程模型拟合出的直线具有良好的线性关系(R~2=0.934 31),说明Avrami方程能较好地适用于稻米油基凝胶油结晶过程的研究,得到Avrami指数n为1.396 83,表明该凝胶油的晶体成核为均相瞬时成核并按照一维与二维混合结晶方式生长。  相似文献   

5.
In this study, hazelnut oil oleogels prepared with sunflower wax and carnauba wax were analyzed and compared with a commercial shortening. Oil binding capacities of sunflower wax oleogels were higher than 99%, while carnauba wax had a maximum value of 97.6% for 10% addition level. At 3% addition level of carnauba wax, no gel developed. The crystal formation time of sunflower wax was shorter. Although the highest (8.5%) solid fat content was observed in the 10% carnauba wax containing oleogel (HC10) sample, it was 30.4% in the commercial shortening sample at 20°C. The peak melting temperature of commercial shortening was 52.3°C, and among all organogels, sunflower wax oleogel at 3% addition level had the closest value (58.4°C). The melting enthalpies of the oleogels ranged from 4.3 to 20.3 J/g, while it was 10.9 J/g for the commercial shortening sample. The firmness and stickiness values in the oleogel samples were lower than that of commercial shortening sample. On the other hand, there was no significant change of firmness and stickiness during storage, indicating good stability (p ≤ 0.001). Especially the sunflower wax oleogels were very homogenous and smooth in structure. The polarized light microscopy pictures revealed needle-like crystals for sunflower wax and aggregate-like crystals for carnauba wax oleogels. The x-ray diffraction measurements of the crystals showed the β´ types of the polymorphic structures. Furthermore, the oleogels were very stable against oxidation during the storage period. Hazelnut oil organogels prepared with sunflower wax can be good source material for shortening or margarine-like products.  相似文献   

6.
以芝麻油为原料,通过添加虫胶(Shellac,LAC)、单硬脂酸甘油酯(Monoacylglycerol,MAG)、乙基纤维素(Ethyl Cellulose,EC)三种不同种类凝胶因子制备出构型不同的凝胶油,并对凝胶油的持油能力、硬度、热力学性质、结晶形态等特性做了初步研究.结果表明,凝胶因子种类及添加比例对凝胶油临...  相似文献   

7.
目的 研究乳酸菌胞外多糖对低脂Mozzarella奶酪质构等品质特性的影响。方法 在脱除50%乳脂肪的原料中加入0.5%乳酸菌胞外多糖制作低脂Mozzarella奶酪, 同时以全脂Mozzarella奶酪和低脂Mozzarella奶酪为对照, 对Mozzarella奶酪成熟过程中的硬度、弹性、胶黏性、咀嚼性、融化性、油脂析出性、微观结构及感官评分等指标进行分析。结果 0.5%乳酸菌胞外多糖提高了低脂Mozzarella奶酪的水分含量、出品率, 改善了低脂Mozzarella奶酪致密的结构, 形成了类似全脂Mozzarella奶酪疏松、光滑的组织结构, 降低了低脂Mozzarella奶酪的硬度、胶黏性和咀嚼性, 提高了弹性、融化化性和油脂析出, 成熟90 d加入多糖低脂Mozzarella奶酪的滋味和气味、组织状态、色泽接近全脂Mozzarella奶酪。结论 乳酸菌胞外多糖可以提高低脂Mozzarella奶酪的水分含量和出品率, 改善低脂Mozzarella奶酪的组织结构和质构特性。  相似文献   

8.
《Food chemistry》2002,79(2):193-198
The effect of a commercial adjunct culture (CR-213), containing Lactococcus lactis subsp. cremoris and Lactococcus lactis subsp.lactis, added at the level of 0.06 or 0.09% (w/w) to cheese milk, on the characteristics of the resultant low-fat Feta-type cheese during aging, was studied. Two controls, a full-fat cheese (∼22% fat) and a low-fat cheese (∼7% fat, made using the standard procedure), were also prepared. The results indicated that the adjunct containing low-fat cheeses exhibited no significant (P>0.05) differences in compositional (moisture, fat, protein, salt, pH) or textural (force and compression to fracture, hardness) characteristics in comparison with the low-fat control cheese. It was also found that the use of the adjunct culture slightly improved the flavour intensity of the low-fat cheese which received a flavour score similar to that of the full-fat control cheese. Moreover, the experimental low-fat cheeses received significantly (P<0.05) higher total scores (overall quality) than the low-fat control cheese but lower than the full-fat cheese.  相似文献   

9.
Low-fat Manchego cheeses (15 g fat/L milk) were prepared with three commercial fat replacers consisting of low methoxyl pectin (LMP), whey protein concentrate (WPC) and microparticulated whey protein (MWP). A low-fat cheese (15 g fat/L milk) without added fat replacer and a full-fat cheese (30 g fat/L milk) were prepared as controls. Cheeses were matured thirty days prior to instrumental texture profile analysis, microstructure analysis, and discriminative sensory evaluation. Scanning electron micrographs showed that the low-fat cheeses incorporating the LMP and WPC fat replacers lost the compact and dense protein matrix characteristic of the low-fat control cheese and exhibited hardness, springiness, cohesiveness and chewiness similar to the full-fat control cheese. No significant difference was found in the sensory characteristics between the full-fat control cheese and the cheese incorporating WPC.  相似文献   

10.
以米糠蜡、棕榈蜡、蜂蜡3种食品级植物蜡为凝胶剂,葵花籽油、油茶籽油、亚麻籽油、棉籽油为基料油,构建了植物油基油凝胶,系统分析了油凝胶的外观形态、持油能力、微观结构、硬度、晶型及熔化结晶行为。结果发现,棕榈蜡基油凝胶涂抹性能优良,蜂蜡基油凝胶在三者中具有最高的持油能力。微观分析表明,米糠蜡形成的油凝胶晶体结构较为清晰,呈细长的针状;蜂蜡形成的油凝胶晶体结构最为细小,呈细小的针状;棕榈蜡形成的油凝胶,针型细密,并呈絮状结晶。晶体密度及样品硬度均随凝胶剂质量分数增加而增加。油凝胶的晶型与凝胶剂质量分数、基料油的种类无太大关系,主要取决于凝胶剂的种类。熔化结晶行为表明,凝胶剂种类相同时,随着其质量分数的增加,油凝胶的结晶/熔化峰值温度均升高。  相似文献   

11.
Two commercially available special starter culture systems, Alp DIP and a mixture of Alp DIP D and Joghurt V1, were compared with one commercial regular starter culture, CH-1, for their effects on the compositional, sensory and textural characteristics of lowfat (9.5%) high moisture (49.6%) Kefalograviera-type cheese during aging. A full-fat control Kefalograviera cheese (30.8% fat, 37.8% moisture) was also made with the regular starter culture. The results indicated that the type of starter did not affect the composition (moisture, fat, protein, salt and pH) of the lowfat cheese. Sensory analysis showed that the lowfat cheeses made with the special cultures received greater body and texture scores and significantly higher flavor scores than the lowfat control cheese after aging for 90 and 180 d. Moreover, the former cheeses received body and texture and flavor scores not significantly different from those of the full-fat cheese. Texture profile analysis by Instron showed that there were no significant differences in the textural characteristics (force and compression to fracture, cohesiveness, springiness, gumminess and chewiness) between lowfat cheeses made with the special cultures and that made with the regular starter, except for hardness which was significantly lower in the former cheeses.  相似文献   

12.
Confocal laser scanning microscopy was used to compare the microstructure of six Australian commercial cream cheese products. The optimal conditions for cryo scanning electron microscopy (cryo SEM) analysis of cream cheese microstructure were also examined. These complementary techniques revealed a typical cream cheese microstructure of homogenised fat globules embedded in a non-continuous protein network. The association between fat and protein within the microstructure was influenced by product composition (fat:protein ratio, moisture content) and ingredients. The addition of emulsifier led to a softer product with distinct microstructure. Cryo SEM also revealed a “honeycomb”-like structure, which was interpreted as a eutectic artefact formed by the addition of gum(s). Product hardness and gel strength generally correlated with high fat, low moisture content and a compact microstructure. Overall, this study shows how product composition affects the microstructure, texture and rheological properties of cream cheese.  相似文献   

13.
《Journal of dairy science》2021,104(10):10500-10512
In the manufacture of cream cheese, sweet cream and milk are blended to prepare the cream cheese mix, although other ingredients such as condensed skim milk and skim milk powder may also be included. Whey cream (WC) is an underutilized fat source, which has smaller fat droplets and slightly different chemical composition than sweet cream. This study investigated the rheological and textural properties of cream cheeses manufactured by substituting sweet cream with various levels of WC. Three different cream cheese mixes were prepared: control mix (CC; 0% WC), cream cheese mixes containing 25% WC (25WC; i.e., 75% sweet cream), and cream cheese mixes with 75% WC (75WC; i.e., 25% sweet cream). The CC, 25WC, and 75WC mixes were then used to manufacture cream cheeses. We also studied the effect of WC on the initial step in cream cheese manufacture (i.e., the acid gelation process monitored using dynamic small amplitude rheology). Acid gels were also prepared with added denatured whey proteins or membrane proteins/phospholipids (PL) to evaluate how these components affected gel properties. The rheological, textural, and sensory properties of cream cheeses were also measured. The WC samples had significantly higher levels of PL and insoluble protein compared with sweet cream. An increase in the level of WC reduced the rate of acid gel development, similar to the effect of whey phospholipid concentrate added to mixes. In cream cheese, an increase in the level of added WC resulted in significantly lower storage modulus values at temperatures <20°C. Texture results, obtained from instrumental and sensory analyses, showed that high level of WC resulted in significantly lower firmness or hardness values and higher stickiness compared with cream cheeses made with 25WC or CC cream cheeses. The softer, less elastic gels or cheeses resulting from the use of high levels of WC are likely due to the presence of components such as PL and proteins from the native milk fat globule membrane. The use of low levels of WC in cream cheese did not alter the texture, whereas high levels of WC could be used if manufacturers want to produce more spreadable products.  相似文献   

14.
Fat globules interspersed in the protein network have a major role in cream cheese texture that greatly impacts on its consumer acceptability. This study investigated the effects of fat content on the lubrication, rheological, and structural characteristics of cream cheeses manufactured with 0.5, 5.5 or 11.6% (w/w) fat content. All three cheese samples showed viscoelastic, non-Newtonian and shear thinning behaviour. The fat contents were shown to affect tribological behaviour and their high-speed regimes correlated well with the bulk rheology (viscosity). The low-fat content was associated with higher friction, firmer texture and reduced spreadability of the cream cheese, due to fewer fat globules being interspersed in the protein matrix, which was confirmed from confocal images.  相似文献   

15.
Oils and fats are widely used in the food formulations in order to improve nutritional and some quality characteristics of food products. Solid fats produced from oils by hydrogenization, interesterification, and fractionation processes are widely used in different foodstuffs for these aims. In recent years, consumer awareness of relation between diet and health has increased which can cause worry about solid fat including products in terms of their high saturated fatty acid and trans fatty acid contents. Therefore, different attempts have been carried out to find alternative ways to produce solid fat with low saturated fatty acid content. One of the promising ways is using oleogels, structuring oils with oleogelators. In this review, history, raw materials and production methods of the oleogels and their functions in oleogel quality were mentioned. Moreover, studies related with oleogel usage in different products were summarized and positive and negative aspects of oleogel were also mentioned. Considering the results of the related studies, it can be concluded that oleogels can be used in the formulation of bakery products, breakfast spreads, margarines, chocolates and chocolate-derived products and some of the meat products.  相似文献   

16.
Requeijão cremoso’ is a spreadable processed cheese that shows ample acceptance on the Brazilian market. In this work, analogues of this cheese, made by substituting 25% and 50% of the dairy fat with vegetable fat, were studied with respect to physical–chemical composition, texture profile, microstructure and sensory acceptance. The substitution of part of the dairy cream by vegetable fat resulted in increased adhesiveness and hardness. The traditional cheese presented a uniform protein network in which numerous small fat particles were dispersed, whilst in the analogues, the fat globules were present in smaller numbers and with greater diameters, a behaviour intensified by increasing proportions of vegetable fat. In the sensory analysis, the traditional cheese and the analogue with 50% vegetable fat were better evaluated than the analogue with 25% vegetable fat.  相似文献   

17.
Cheeses with 60% reduced fat were prepared with three fat mimetics and viscoelasticity was studied. Storage and loss moduli of low-fat cheeses made with a carbohydrate-based fat mimetic were greater (p < 0.05) than those of low-fat cheeses made with two protein-based fat mimetics or low-fat control cheese, but smaller (p < 0.05) than the storage and loss moduli of full-fat cheese. A six-element Kelvin model properly predicted the creep compliance for the full-fat cheese and the low-fat cheeses made with or without fat mimetics. Low-fat cheese made with a carbohydrate-based fat mimetic had a network structure more similar to full-fat cheese than the low-fat control or samples made with protein-based fat mimetics.  相似文献   

18.
在稻米油中添加一定量的甘蔗蜡制成具有塑性的油脂凝胶。研究甘蔗蜡添加量对油脂凝胶硬度、热力学性质、固体脂肪含量(solid fat content,SFC)、X射线衍射(X-ray diffraction,XRD)和微观结构的影响。结果表明:在20 ℃条件下,油脂凝胶中甘蔗蜡添加量不小于7%时,即可出现凝胶行为。油脂凝胶体系的硬度、SFC、融化焓和结晶焓均随甘蔗蜡添加量的增多而增加。XRD结果显示,甘蔗蜡油脂凝胶中同时含有α、β、β’三种晶型,其中以β晶型为主,随着甘蔗蜡添加量增多,α和β’晶型的量增多。晶体呈球状,分布均匀。随甘蔗蜡添加量的增加,结晶数量增加,尺寸减小,导致分布密度增加,即甘蔗蜡添加量越高,硬度越大,结构化植物油的能力越强,形成油脂凝胶结构稳定性越好,表明在稻米油中加入甘蔗蜡可以形成油脂凝胶,该油脂凝胶中无反式脂肪酸,富含天然营养成分,具有适宜的油脂凝胶硬度及良好的结构稳定性等优势。  相似文献   

19.
Ten commercial Cheddar cheeses of variable quality differing in fat content and age were subjected to compositional, proteolytic, lipolytic and sensory analyses. The compositional parameters of the full-fat cheeses were predominantly outside those typically associated with good-quality cheese. Sensory analysis discriminated the full-fat cheeses predominantly by age, with the longer ripened cheeses associated with more negative attributes, some which appeared to be due to excessive lipolysis and/or β-casein breakdown. Both proteolysis and lipolysis appear to be age dependent. The two reduced-fat cheeses were clearly discriminated from the eight full-fat cheeses by sensory analysis that appeared to be due to differences in composition and the extent of lipolysis.  相似文献   

20.
The effects of pectin gel and protein base on processed semi-solid cheese analogues were studied through microstructure, texture, rheology, thermal analysis and sensory evaluation. Scanning electron microscopy revealed differences in the microstructure of processed cheese analogues. Samples made with full-fat contained higher concentrations of fat globules and were denser compared with low-fat cheese analogues with or without pectin gel. The pectin gel in the products acted as a linkage with other ingredients and made the products more compact and had less cavity compared with the products without pectin gel added. On rheological analysis, the full-fat products manifested a more solid-like form. The storage modulus of pectin gel sample was higher than that without pectin gel. All the samples' rheological parameters were depending on the oscillatory frequency and temperature. In low-fat samples, pectin gel added or not affected the hardness, gumminess, chewiness and adhesiveness significantly. The pectin gel addition show positive effect to the texture profile of the low-fat cheese analogues. Through thermal analysis, the meltability and glass transition temperature of the processed cheese analogues were measured. The low-fat cheese analogue with pectin gel addition got the higher texture and mouthfeel scores through sensory evaluation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号