首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Starvation therapy kills tumor cells via consuming glucose to cut off their energy supply. However, since glucose oxidase (GOx)-mediated glycolysis is oxygen-dependent, the cascade reaction based on GOx faces the challenge of a hypoxic tumor microenvironment. By decomposition of glycolysis production of H2O2 into O2, starvation therapy can be enhanced, but chemodynamic therapy is limited. Here, a close-loop strategy for on demand H2O2 and O2 delivery, release, and recycling is proposed. The nanoreactor (metal-protein-polyphenol capsule) is designed by incorporating two native proteins, GOx and hemoglobin (Hb), in polyphenol networks with zeolitic imidazolate framework as sacrificial templates. Glycolysis occurs in the presence of GOx with O2 consumption and the produced H2O2 reacts with Hb to produce highly cytotoxic hydroxyl radicals (•OH) and methemoglobin (MHb) (Fenton reaction). Benefiting from the different oxygen carrying capacities of Hb and MHb, oxygen on Hb is rapidly released to supplement its consumption during glycolysis. Glycolysis and Fenton reactions are mutually reinforced by oxygen supply, consuming more glucose and producing more hydroxyl radicals and ultimately enhancing both starvation therapy and chemodynamic therapy. This cascade nanoreactor exhibits high efficiency for tumor suppression and provides an effective strategy for oxygen-mediated synergistic starvation therapy and chemodynamic therapy.  相似文献   

2.
在肿瘤的饥饿治疗及协同治疗中,基于葡萄糖氧化酶(GOx)的纳米诊疗剂展现出具大的应用前景.自组装等离子体金囊泡(GV),由于具有独特的光学性能、巨大空腔和强局域表面等离子体共振等特性,可作为协同治疗的多功能纳米载体.本文中,我们开发了一种装载GOx的GV(GV-GOx)用于光触发释放GOx,同时增强GOx的催化活性,从而实现程序化光热-饥饿治疗.在近红外激光照射下,由于GV具有等离子体耦合效应, GV-GOx可以产生很强的局部高热,引起封装的GOx释放,同时高热可提高GOx催化活性,从而增强肿瘤的饥饿效应.此外,高光热效应可促进细胞对GV-GOx的摄取,并可通过活体光声/光热双模态成像对协同治疗进行有效监测.令人印象深刻的是,协同光热/饥饿疗法能完全消融4T1荷瘤小鼠的肿瘤,抗肿瘤效果明显优于单一疗法,且没有明显的系统毒性.本工作展示了一种光触发的纳米平台,可用于癌症协同治疗.  相似文献   

3.
协同治疗是指将多种治疗方法联合在一起使用,从而显著增强治疗效果.然而,如何设计出理想的组合以最大限度地发挥协同效应仍是肿瘤治疗的一大挑战.在此,我们构建了一种由葡萄糖氧化酶修饰的上转换纳米制剂,用于程序化的肿瘤饥饿-光动力协同治疗研究.葡萄糖氧化酶催化氧化肿瘤内的葡萄糖并产生过氧化氢,该过程消耗葡萄糖和氧气,使得肿瘤细胞缺乏营养物质处于"饥饿"状态,导致细胞死亡.并且在980 nm的近红外光激发下,上转换纳米颗粒激发产生紫外可见光,将双氧水裂解成毒性更强的羟基自由基,进一步杀死肿瘤细胞.体外和体内实验均证实这种饥饿-光动力协同治疗明显优于任何单一治疗.本研究为设计程序可控的饥饿-光动力协同治疗提供了理论支撑.  相似文献   

4.
Fenton reaction‐mediated chemodynamic therapy (CDT) can kill cancer cells via the conversion of H2O2 to highly toxic HO?. However, problems such as insufficient H2O2 levels in the tumor tissue and low Fenton reaction efficiency severely limit the performance of CDT. Here, the prodrug tirapazamine (TPZ)‐loaded human serum albumin (HSA)–glucose oxidase (GOx) mixture is prepared and modified with a metal–polyphenol network composed of ferric ions (Fe3+) and tannic acid (TA), to obtain a self‐amplified nanoreactor termed HSA–GOx–TPZ–Fe3+–TA (HGTFT) for sustainable and cascade cancer therapy with exogenous H2O2 production and TA‐accelerated Fe3+/Fe2+ conversion. The HGTFT nanoreactor can efficiently convert oxygen into HO? for CDT, consume glucose for starvation therapy, and provide a hypoxic environment for TPZ radical‐mediated chemotherapy. Besides, it is revealed that the nanoreactor can significantly elevate the intracellular reactive oxygen species content and hypoxia level, decrease the intracellular glutathione content, and release metal ions in the tumors for metal ion interference therapy (also termed “ion‐interference therapy” or “metal ion therapy”). Further, the nanoreactor can also increase the tumor’s hypoxia level and efficiently inhibit tumor growth. It is believed that this tumor microenvironment‐regulable nanoreactor with sustainable and cascade anticancer performance and excellent biosafety represents an advance in nanomedicine.  相似文献   

5.
吴爱军  朱敏  朱钰方 《无机材料学报》2022,37(11):1203-1216
为了清除皮肤肿瘤手术切除后的残余肿瘤细胞并促进皮肤伤口愈合, 开发一种具有肿瘤治疗和促进皮肤伤口愈合功能的水凝胶具有重要意义。本研究以水合硅酸钙纳米线为基体材料, 以NaCl和KCl为熔盐介质, CuSO4•5H2O为铜源, 采用熔盐法制备了含铜硅酸钙(Cu-CS)纳米棒, 并将其复合到海藻酸钠水凝胶得到Cu-CS纳米棒复合水凝胶(Cu-CS/SA)。实验结果表明, 随着铜盐添加量增大和熔盐处理温度升高, Cu-CS纳米棒的Cu含量逐渐上升, 但其催化过氧化氢(H2O2)生成羟基自由基(•OH)的性能呈现先升高后下降的趋势; 在3%铜盐添加量和熔盐处理温度700 ℃条件下所制备的3Cu-CS纳米棒具有最佳的催化性能, Cu元素均匀地分布在纳米棒表面, 其价态为+2价, 且Cu元素的含量极低, 仅为0.61%。细胞实验发现Cu-CS纳米棒含量不超过20%的复合水凝胶具有良好的生物相容性, 并且Cu- CS/SA水凝胶在模拟肿瘤微环境条件下能催化H2O2生成高细胞毒性的•OH, 进而实现化学动力学治疗肿瘤的效果, 同时还能促进血管内皮细胞和成纤维细胞的增殖和迁移。因此, Cu-CS纳米棒复合水凝胶有望用于皮肤肿瘤术后治疗。  相似文献   

6.
Glucose oxidase (GOx) can react with intracellular glucose and oxygen (O2) to produce hydrogen peroxide (H2O2) and gluconic acid, which can cut off the nutrition source of cancer cells and consequently inhibit their proliferation. Therefore, GOx is recognised as an ideal endogenous oxido‐reductase for cancer starvation therapy. This process can further regulate the tumor microenvironment by increasing the hypoxia and the acidity. Thus, GOx offers new possibilities for the elaborate design of multifunctional nanocomposites for tumor therapy. However, natural GOx is expensive to prepare and purify and exhibits immunogenicity, short in vivo half‐life, and systemic toxicity. Furthermore, GOx is highly prone to degrade after exposure to biological conditions. These intrinsic shortcomings will undoubtedly limit its biomedical applications. Accordingly, some nanocarriers can be used to protect GOx from the surrounding environment, thus controlling or preserving the activity. A variety of nanocarriers including hollow mesoporous silica nanoparticles, metal–organic frameworks, organic polymers, and magnetic nanoparticles are summarized for the construction of GOx‐based nanocomposites for multimodal synergistic cancer therapy. In addition, current challenges and promising developments in this area are highlighted.  相似文献   

7.
Chemodynamic therapy (CDT) has attracted considerable attention recently, but the poor reaction kinetics restrict its practical utility in clinic. Herein, glucose oxidase (GOx) functionalized ancient pigment nanosheets (SrCuSi4O10, SC) for programmable near‐infrared II (NIR‐II) photothermal‐enhanced starvation primed CDT is developed. The SC nanosheets (SC NSs) are readily exfoliated from SC bulk suspension in water and subsequently functionalized with GOx to form the nanocatalyst (denoted as SC@G NSs). Upon laser irradiation, the photothermal effect of SC NSs can enhance the catalytic activity of GOx for NIR‐II photothermal‐enhanced starvation therapy, which effectively eliminates intratumoral glucose and produces abundant hydrogen peroxide (H2O2). Importantly, the high photothermal‐conversion efficiency (46.3%) of SC@G NSs in second biological window permits photothermal therapy of deep‐seated tumors under the guidance of NIR‐II photoacoustic imaging. Moreover, the acidity amplification due to gluconic acid generation will in turn accelerate the degradation of SC NSs, facilitating the release of strontium (Sr) and copper (Cu) ions. Both the elevated H2O2 and the released ions will prime the Cu2+/Sr2+‐H2O2 reaction for enhanced CDT. Thus, a programmable NIR‐II photothermal‐enhanced starvation primed CDT is established to combat cancer with minimal side effects.  相似文献   

8.
The unique tumor microenvironment (TME) facilitates cancer proliferation and metastasis, and it is hard to cure cancer completely via monotherapy. Herein, a multifunctional cascade bioreactor based on hollow mesoporous Cu2MoS4 (CMS) loaded with glucose oxidase (GOx) is constructed for synergetic cancer therapy by chemo‐dynamic therapy (CDT)/starvation therapy/phototherapy/immunotherapy. The CMS harboring multivalent elements (Cu1+/2+, Mo4+/6+) exhibit Fenton‐like, glutathione (GSH) peroxidase‐like and catalase‐like activity. Once internalized into the tumor, CMS could generate ·OH for CDT via Fenton‐like reaction and deplete overexpressed GSH in TME to alleviate antioxidant capability of the tumors. Moreover, under hypoxia TME, the catalase‐like CMS could react with endogenous H2O2 to generate O2 for activating the catalyzed oxidation of glucose by GOx for starvation therapy accompanied with the regeneration of H2O2. The regenerated H2O2 can devote to Fenton‐like reaction for realizing GOx‐catalysis‐enhanced CDT. Meanwhile, the CMS under 1064 nm laser irradiation shows remarkable tumor‐killing ability by phototherapy due to its excellent photothermal conversion efficiency (η = 63.3%) and cytotoxic superoxide anion (·O2?) generation performance. More importantly, the PEGylated CMS@GOx‐based synergistic therapy combined with checkpoint blockade therapy could elicit robust immune responses for both effectively ablating primary tumors and inhibiting cancer metastasis.  相似文献   

9.
Inherited bacterial resistance and biofilm-induced local immune inactivation are important factors in the failure of antibiotics to fight against bacterial infections. Herein, antibiotic-loaded mesoporous nanozymes (HA@MRuO2-Cip/GOx) are fabricated for overcoming bacterial resistance, and activating the local immunosuppression in biofilm microenvironment (BME). HA@MRuO2-Cip/GOx are prepared by physical adsorption between ciprofloxacin (Cip) or glucose oxidase (GOx) and MRuO2 NPs, and modified with hyaluronic acid (HA). In vitro, HA@MRuO2-Cip/GOx cleaves extracellular DNA (eDNA) to disrupt biofilm, thereby enhancing Cip kill planktonic bacteria. Furthermore, HA@MRuO2-Cip/GOx can induce polarization and enhance phagocytosis of a macrophage-derived cell line. More importantly, in vivo therapeutic performance confirms that HA@MRuO2-Cip/GOx can trigger macrophage-related immunity, and effectively alleviate MRSA-bacterial lung infections. Accordingly, nanocatalytic therapy combined with targeted delivery of antibiotics could enhance the treatment of bacterial infections.  相似文献   

10.
The interaction between platelets and circulating tumor cells (CTCs) contributes to distal tumor metastasis by protecting CTCs from immunological assault and shear stress, which can be disrupted by nitric oxide (NO) through inhibiting platelet-mediated adhesion. To eradicate primitive tumors and inhibit CTC-based pulmonary metastasis, a novel biomimetic nanomedicine (mCuMNO) is designed by encapsulating Cu+-responsive S-nitrosoglutathione as a NO donor into a copper-based metal-organic framework (CuM). This work discovers that mCuMNO can target tumor regions and deplete local glutathione (GSH) to reduce Cu2+ to Cu+, followed by triggering NO release and hydroxyl radicals ( · OH) production, thereby interrupting platelet/CTC interplay and contributing to chemodynamic therapy. Detailed studies demonstrate that mCuMNO exhibits high efficiency and safety in tumor therapy and antimetastasis activity, sheding new light on the development of CuM-based tumor synthetic therapy.  相似文献   

11.
Targeting is one of the most important strategies for enhancing the efficacy of cancer photothermal therapy (PTT) and reducing damage to surrounding normal tissues. Compared with the traditional targeting approaches, the active targeting of breast cancer cells in PTT using chemotherapeutic drugs, such as tamoxifen (TAM), in combination with single‐molecule photothermal photosensitizers has superior selectivity and therapeutic effects. However, single‐molecule drug‐targeting photosensitizers for improved PTT efficacy are not widely reported. Accordingly, herein, a near‐infrared induced small‐molecule photothermal photosensitizer (CyT) is developed that actively targets the estrogen receptors (ERs) of breast cancer cells as well as targets mitochondria by structure‐inherent targeting. Cell uptake and cytotoxicity studies using different types of cells show that CyT enhances the efficiency of TAM‐based PTT by targeting ER‐overexpressing breast cancer cells and selectively killing them. In vivo experiments demonstrate that CyT can be used as a photothermal agent for fluorescence imaging‐guided PTT. More importantly, the intravenous injection of CyT results in better targeting and efficiency of tumor inhibition compared with that achieved with the TAM‐free control molecule Cy. Thus, the study presents an excellent small‐molecule photothermal agent for breast cancer therapy with potential clinical application prospects.  相似文献   

12.
Triple-negative breast cancer (TNBC) displays a highly aggressive nature that originates from a small subpopulation of TNBC stem cells (TNBCSCs), and these TNBCSCs give rise to chemoresistance, tumor metastasis, and recurrence. Unfortunately, traditional chemotherapy eradicates normal TNBC cells but fails to kill quiescent TNBCSCs. To explore a new strategy for eradicating TNBCSCs, a disulfide-mediated self-assembly nano-prodrug that can achieve the co-delivery of ferroptosis drug, differentiation-inducing agent, and chemotherapeutics for simultaneous TNBCSCs and TNBC treatment, is reported. In this nano-prodrug, the disulfide bond not only induces self-assembly behavior of different small molecular drug but also serves as a glutathione (GSH)-responsive trigger in controlled drug release. More importantly, the differentiation-inducing agent can transform TNBCSCs into normal TNBC cells, and this differentiation with chemotherapeutics provides an effective approach to indirectly eradicate TNBCSCs. In addition, ferroptosis therapy is essentially different from the apoptosis-induced cell death of differentiation or chemotherapeutic, which causes cell death to both TNBCSCs and normal TNBC cells. In different TNBC mouse models, this nano-prodrug significantly improves anti-tumor efficacy and effectively inhibits the tumor metastasis. This all-in-one strategy enables controlled drug release and reduces stemness-related drug resistance, enhancing the chemotherapeutic sensitivity in TNBC treatment.  相似文献   

13.
Hydrogels with adhesive properties have potential for numerous biomedical applications. Here, the design of a novel, intrinsically adhesive hydrogel and its use in developing internal therapeutic bandages is reported. The design involves incorporation of “triple hydrogen bonding clusters” (THBCs) as side groups into the hydrogel matrix. The THBC through a unique “load sharing” effect and an increase in bond density results in strong adhesions of the hydrogel to a range of surfaces, including glass, plastic, wood, poly(tetrafluoroethylene) (PTFE), stainless steel, and biological tissues, even without any chemical reaction. Using the adhesive hydrogel, tissue-adhesive bandages are developed for either targeted and sustained release of chemotherapeutic nanodrug for liver cancer treatment, or anchored delivery of pancreatic islets for a potential type 1 diabetes (T1D) cell replacement therapy. Stable adhesion of the bandage inside the body enables almost complete tumor suppression in an orthotopic liver cancer mouse model and ≈1 month diabetes correction in chemically induced diabetic mice.  相似文献   

14.
Drug delivery strategies possessing selectivity for cancer cells are eagerly needed in therapy of metastatic breast cancer. In this study, the chemotherapeutic agent, docetaxel (DTX), is conjugated onto heparan sulfate (HS). Aspirin (ASP), which has the activity of anti‐metastasis and enhancing T cells infiltration in tumors, is encapsulated into the HS‐DTX micelle. Then the cationic polyethyleneimine (PEI)‐polyethylene glycol (PEG) copolymer binds to HS via electrostatic force, forming the ASP‐loaded HS‐DTX micelle (AHD)/PEI‐PEG nanocomplex (PAHD). PAHD displays long circulation behavior in blood due to the PEG shell. Under the tumor microenvironment with weakly acidic pH, PEI‐PEG separates from AHD, and the free cationic PEI‐PEG facilitates the cellular uptake of AHD by increasing permeability of cell membranes. Then the overexpressed heparanase degrades HS, releasing ASP and DTX. PAHD shows specific toxicity toward tumor cells but not normal cells, with advanced activity of inhibiting tumor growth and lung metastasis in 4T1 tumor‐bearing mice. The number of CD8+ T cells in tumor tissues is also increased. Therefore, PAHD can become an efficient drug delivery system for breast cancer treatment.  相似文献   

15.
Over the past 3 years, glucose oxidase (GOx) has aroused great research interest in the context of cancer treatment due to its inherent biocompatibility and biodegradability, and its unique catalytic properties against β‐d ‐glucose. GOx can effectively catalyze the oxidation of glucose into gluconic acid and hydrogen peroxide. This process depletes oxygen levels, resulting in elevated acidity, hypoxia, and oxidative stress in the tumor microenvironment. All of these changes can be readily harnessed to develop a multimodal synergistic cancer therapy by combining GOx with other therapeutic approaches. Herein, the representative studies of GOx‐instructed multimodal synergistic cancer therapy are introduced, and their synergistic mechanisms are discussed systematically. The current challenges and future prospects to advance the development of GOx‐based nanomedicines in this cutting‐edge research area are highlighted.  相似文献   

16.
Piezoelectric material-mediated sonodynamic therapy (SDT) has received considerable research interest in cancer therapy. However, the simple applications of conventional piezoelectric materials do not realize the full potential of piezoelectric materials in medicine. Therefore, the energy band structure of a piezoelectric material is modulated in this study to meet the actual requirement for cancer treatment. Herein, an elaborate PEGylated piezoelectric solid solution 0.7BiFeO3-0.3BaTiO3 nanoparticles (P-BF-BT NPs) is synthesized, and the resultant particles achieve excellent piezoelectric properties and their band structure is tuned via band engineering. The tuned band structure of P-BF-BT NPs is energetically favorable for the synchronous production of superoxide radicals (•O2) and oxygen (O2) self-supply via water splitting by the piezoelectric effect. Besides, the P-BF-BT NPs can initiate the Fenton reaction to generate hydroxyl radical (•OH), and thus, chemodynamic therapy (CDT) can be augmented by ultrasound. Detailed in vitro and in vivo research has verified the promising effects of multimodal imaging-guided P-BF-BT NP-mediated synergistic SDT/CDT by the piezo-Fenton process in hypoxic tumor elimination, accompanied by high therapeutic biosafety. The current demonstrates a novel strategy for designing and synthesizing “custom-made” piezoelectric materials for cancer therapy in the future.  相似文献   

17.
Most chemotherapeutic drugs and their nanomedicine formulations exert anticancer activity by inducing cancer cell apoptosis. However, cancer cells inherently have and acquire many antiapoptosis mechanisms, causing cancer drug resistance and poor prognoses in patients. Herein, a potent paraptosis‐inducing nanomedicine is reported that causes quick nonapoptotic death of cancer cells, overcoming apoptosis‐based resistance and effectively inhibiting drug‐resistant tumor growth. The nanomedicine is composed of micelles made from an amphiphilic 8‐hydroxyquinoline (HQ)‐conjugate block copolymer with polyethylene glycol. Cu2+ can catalyze the hydrolysis of the HQ conjugation linker and liberate HQ, and these molecules can form the complex Cu(HQ)2, a strong proteasome inhibitor effective at inducing cell paraptosis. In vivo, the Cu2+‐responsive HQ‐releasing micelles respond to elevated tumor Cu2+ levels or externally administered Cu2+ and effectively inhibit the growth of human breast adenocarcinoma doxorubicin‐resistant (MCF‐7/ADR) tumors. Compared with other nanomedicines that overcome drug resistance via delivering several agents or even siRNA, this paraptosis‐inducing nanomedicine provides a simple but potent approach to overcoming cancer drug resistance.  相似文献   

18.
任姣雨  王虹 《复合材料学报》2023,40(3):1655-1662
小干扰RNA(siRNA)由于其降低基因表达的能力,通常在基因治疗中充当重要的治疗剂。然而,siRNA的低细胞摄取限制了其在癌症治疗中的功效。本文报告了一种生物相容的纳米马达-水凝胶递送系统,使siRNA可在癌症靶向治疗中获得高细胞摄取率。首先通过层层自组装技术,以铂纳米粒子为核,使用聚乙烯亚胺(PEI)和聚苯乙烯磺酸钠(PSS)制备载有siRNA的纳米马达(NM)。为了瘤内给药和缓释,将纳米马达装载在席夫碱水凝胶中,构建NM-hydrogel系统。肿瘤微环境具有弱酸性和高H2O2含量的特点。水凝胶响应弱酸性微环境释放纳米马达,释放的纳米马达可以通过过氧化氢的催化分解实现自驱动,其运动速度在1wt%H2O2下为1.78μm/s(每秒约22.25个体长)。纳米马达的自驱动性能和由纳米马达上修饰的叶酸(FA)介导的特定内吞作用使NM-hydrogel系统具有63.8%的高细胞摄取率。同时,自驱动性能和PEI引起的质子海绵效应促进了纳米马达在肿瘤细胞中的深度渗透和长时间滞留,从而促进了NM-hydroge...  相似文献   

19.
Metastatic breast cancer may be resistant to chemo‐immunotherapy due to the existence of cancer stem cells (CSC). Also, the control of particle size and drug release of a drug carrier for multidrug combination is a key issue influencing the therapy effect. Here, a cocktail strategy is reported, in which chemotherapy against both bulk tumor cells and CSC and immune checkpoint blockade therapy are intergraded into one drug delivery system. The chemotherapeutic agent paclitaxel (PTX), the anti‐CSC agent thioridazine (THZ), and the PD‐1/PD‐L1 inhibitor HY19991 (HY) are all incorporated into an enzyme/pH dual‐sensitive nanoparticle with a micelle–liposome double‐layer structure. The particle size shrinks when the nanoparticle transfers from circulation to tumor tissues, favoring both pharmacokinetics and cellular uptake, meanwhile achieving sequential drug release where needed. This nano device, named PM@THL, increases the intratumoral drug concentrations in mice and exhibits significant anticancer efficacy, with tumor inhibiting rate of 93.45% and lung metastasis suppression rate of 97.64%. It also reduces the proportion of CSC and enhances the T cells infiltration in tumor tissues, and thus prolongs the survival of mice. The cocktail therapy based on the spatio‐temporally controlled nano device will be a promising strategy for treating breast cancer.  相似文献   

20.
Many 3D in vitro models induce breast cancer spheroid formation; however, this alone does not recapitulate the complex in vivo phenotype. To effectively screen therapeutics, it is urgently needed to validate in vitro cancer spheroid models against the gold standard of xenografts. A new oxime‐crosslinked hyaluronan (HA) hydrogel is designed, manipulating gelation rate and mechanical properties to grow breast cancer spheroids in 3D. This HA‐oxime breast cancer model maintains the gene expression profile most similar to that of tumor xenografts based on a pan‐cancer gene expression profile (comprising 730 genes) of three different human breast cancer subtypes compared to Matrigel or conventional 2D culture. Differences in gene expression between breast cancer cultures in HA‐oxime versus Matrigel or 2D are confirmed for 12 canonical pathways by gene set variation analysis. Importantly, drug response is dependent on the culture method. Breast cancer cells respond better to the Rac inhibitor (EHT‐1864) and the PI3K inhibitor (AZD6482) when cultured in HA‐oxime versus Matrigel. This study demonstrates the superiority of an HA‐based hydrogel as a platform for in vitro breast cancer culture of both primary, patient‐derived cells and cell lines, and provides a hydrogel culture model that closely matches that in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号