共查询到20条相似文献,搜索用时 15 毫秒
1.
Aviation fuel JP-5 and biodiesel on a diesel engine 总被引:1,自引:0,他引:1
Naval aviation turbine fuel, JP-5, has been accepted as alternative to JP-8 in the frame of the Single Fuel Policy. This has resulted in some ongoing research on JP-5 fuel for its application as a naval single fuel. The necessity to cope with the environmental problems identified in the process of implementing the Single Fuel Policy as well as the strict requirements of modern diesel engines has lead to the need of improved single fuel quality. The development of biomass derived substitutes for diesel, such as biodiesel, is a possible attractive solution. The present paper is an effort to evaluate JP-5 along with diesel and biodiesel for use in a diesel engine. These fuels were used alone and in various mixture fractions in a single cylinder stationary diesel engine in order to evaluate their performance under defined operating conditions of the engine. JP-5 reduced both the NOx and particulate matter emissions as compared to the reference fuel case. Biodiesel significantly lowered particulate emissions, but slightly increased NOx emissions and fuel consumption. Fuel sulfur content has an undesired effect on smoke opacity. Biodiesel increased the fuel consumption when added to petroleum fuels and the increase was larger at high engine loads. Diesel and JP-5 showed similar fuel consumption, with diesel consumption increasing at high engine loads. Ternary blends showed similar behavior. The blends with lower biodiesel content showed lower volumetric fuel consumption. 相似文献
2.
A rapid test to measure performance,emission and wear of a diesel engine fueled with palm oil diesel
H. Masjuki A. M. Zaki S. M. Sapuan 《Journal of the American Oil Chemists' Society》1993,70(10):1021-1025
Results of performance, emission and tribological evaluations of palm oil methyl ester and its blends with conventional diesel
in an automobile diesel engine test bed are presented. Polymerization and carbon deposits on the fuel injector were monitored.
CO, CO2, O2, combustion efficiency and temperature of exhaust gases were also measured. Palm oil methyl ester and its blends have great
potential as alternative diesel fuel. Performance and exhaust gas emission for palm oil methyl ester and its blends with conventional
diesel are comparable with those of conventional diesel fuel. Palm oil methyl ester does not pose a severe environmental problem
and will not deteriorate engine and bearing components. 相似文献
3.
4.
Dynamometer engine tests at steady-state conditions and a wear characteristics study were carried out on an indirect-injection
diesel engine with palm oil diesel (POD) and its emulsions. The POD fuel was obtained in commercial form, and its emulsions
were created by mixing POD fuel to contain 5 and 10% of water by volume. Variations in the engine’s performance characteristics
were determined from the results of steady-state tests carried out at fifteen selected torque-speed matrix points of the engine’s
performance map. The wear characteristics tests were performed by running the engine at half throttle setting for twenty hours
for each fuel system. Then a desk-top comparison study was performed between the base-line fuel system of ordinary diesel
(OD), POD, and its emulsions. Promising results have been obtained. Neither the lower cetane number of POD fuel nor its emulsification
with water presented obstacles to the operation of the diesel engine during a series of steady-state engine tests and the
twenty-hour endurance tests. Engine performance and fuel consumption for POD and its emulsions are comparable with those of
OD fuel. Accumulations of wear metal debris in crank-case oil samples were lower with POD and its emulsions than with baseline
OD fuel. 相似文献
5.
6.
The performance and emissions of an indirect injection (IDI)-turbo automobile diesel engine operated with diesel and blends of degummed-deacidified mixed crude palm oil in diesel at portions of 20, 30, and 40 vol.% are examined and compared at various loads and speeds. Although fuel properties of the tested blends do not exactly meet all regulations of Thailand, they are all able to operate the engine. Comparing this with diesel, especially at full loads, shows that all blends produce the same maximum brake torque and power. A higher blending portion results in a little higher brake specific fuel consumption (+4.3% to +7.6%), a slightly lower brake thermal efficiency (-3.0% to -5.2%), a slightly lower exhaust gas temperature (−2.7% to −3.4%), and a significantly lower amount of black smoke (−30% to −45%). The level of carbon monoxide from the 20 vol.% blend is significantly lower (−70%), and the levels of nitrogen oxides from all blends are little higher. 相似文献
7.
David Y. Z. Chang Jon H. Van Gerpen Inmok Lee Lawrence A. Johnson Earl G. Hammond Stephen J. Marley 《Journal of the American Oil Chemists' Society》1996,73(11):1549-1555
The effects of using blends of methyl and isopropyl esters of soybean oil with No. 2 diesel fuel were studied at several steady-state
operating conditions in a four-cylinder turbocharged diesel engine. Fuel blends that contained 20, 50, and 70% methyl soyate
and 20 and 50% isopropyl soyate were tested. Fuel properties, such as cetane number, also were investigated. Both methyl and
isopropyl esters provided significant reductions in particulate emissions compared with No. 2 diesel fuel. A blend of 50%
methyl ester and 50% No. 2 diesel fuel provided a reduction of 37% in the carbon portion of the particulates and 25% in the
total particulates. The 50% blend of isopropyl ester and 50% No. 2 diesel fuel gave a 55% reduction in carbon and a 28% reduction
in total particulate emissions. Emissions of carbon monoxide and unburned hydrocarbons also were reduced significantly. Oxides
of nitrogen increased by 12%. 相似文献
8.
Malaysian crude palm oil has been successfully converted to methyl esters, also known as palm oil diesel (POD), which is readily
combustible in diesel engines. This paper presents and discusses the results of current studies on the performance and the
effects of POD on the wear characteristics of tribological components of a small, four-stroke diesel engine. Adding POD to
commercial lubricating oil has enhanced the performance of such oils. Results obtained from this study show that the power
output and brake specific fuel consumption of the engine, lubricated with commercial SAE 40 oil blended with POD, are comparable
to those of 100% SAE 40 oil. Wear debris analysis shows that blends of POD and SAE 40 commercial lubricating oil increase
the anti-wear characteristics of the engine when compared to 100% SAE 40 lubricating oil. 相似文献
9.
Effect of altitude and palm oil biodiesel fuelling on the performance and combustion characteristics of a HSDI diesel engine 总被引:1,自引:0,他引:1
Altitude above sea level and fuel’s chemical and physical nature affect engine performance and combustion characteristics. In this work, a combustion diagnosis model including exergy analysis was applied to a turbocharged (TC) automotive diesel engine fuelled with neat palm oil biodiesel (B100) and No. 2 diesel fuel (B0). Tests were performed under steady state operating conditions, at two altitudes above sea level: 500 and 2400 m. Biodiesel fuelling and altitude had an additive effect on the advance in injection and combustion timings. The duration of the premixed combustion stage increased with altitude and decreased with biodiesel. When B100 was used, the transition between this stage and the diffusion stage was practically suppressed. As altitude increased, biodiesel fuelling led to shorter combustion duration, and higher in-cylinder pressures and fuel-air equivalence ratios. Brake thermal efficiency decreased with altitude for both fuels, but in a greater extent for B0. For all fuels and altitudes, exergy destruction rose sharply when combustion started, indicating that this process was the main source of irreversibilities. At both altitudes, the cumulative exergy destruction was higher for B100 due to its earlier and faster combustion process. Some of the results obtained in this work indicate that palm oil biodiesel fuelling can lead to a better engine performance at high altitudes. 相似文献
10.
Depletion of fossils fuels and environmental degradation have prompted researchers throughout the world to search for a suitable alternative fuel for diesel engine. One such step is to utilize renewable fuels in diesel engines by partial or total replacement of diesel in dual fuel mode. In this study, acetylene gas has been considered as an alternative fuel for compression ignition engine, which has excellent combustion properties.Investigation has been carried out on a single cylinder, air cooled, direct injection (DI), compression ignition engine designed to develop the rated power output of 4.4 kW at 1500 rpm under variable load conditions, run on dual fuel mode with diesel as injected primary fuel and acetylene inducted as secondary gaseous fuel at various flow rates. Acetylene aspiration resulted in lower thermal efficiency. Smoke, HC and CO emissions reduced, when compared with baseline diesel operation. With acetylene induction, due to high combustion rates, NOx emission significantly increased. Peak pressure and maximum rate of pressure rise also increased in the dual fuel mode of operation due to higher flame speed. It is concluded that induction of acetylene can significantly reduce smoke, CO and HC emissions with a small penalty on efficiency. 相似文献
11.
The influence of operating parameters on the performance and emissions of a DI diesel engine using methanol-blended-diesel fuel 总被引:2,自引:0,他引:2
In this study, the effects of injection pressure and timing on the performance and emission characteristics of a DI diesel engine using methanol (5%, 10% and 15%) blended-diesel fuel were investigated. The tests were conducted on three different injection pressures (180, 200 and 220 bar) and timings (15°, 20°, and 25° CA BTDC) at 20 Nm engine load and 2200 rpm. The results indicated that brake specific fuel consumption (BSFC), brake specific energy consumption (BSEC), and nitrogen oxides (NOx) emissions increased as brake thermal efficiency (BTE), smoke opacity, carbon monoxide (CO) and total unburned hydrocarbon (THC) decreased with increasing amount of methanol in the fuel mixture. The best results were achieved for BSFC, BSEC and BTE at the original injection pressure and timing. For the all test fuels, the increasing injection pressure and timing caused to decrease in the smoke opacity, CO, THC emissions while NOx emissions increase. 相似文献
12.
The influence of n-butanol/diesel fuel blends utilization on a small diesel engine performance and emissions 总被引:1,自引:0,他引:1
O?uzhan Do?an 《Fuel》2011,90(7):2467-9430
Nitrogen oxides and smoke emissions are the most significant emissions for the diesel engines. Especially, fuels containing high-level oxygen content can have potential to reduce smoke emissions significantly. The aim of the present study is to evaluate the influence of n-butanol/diesel fuel blends (as an oxygenation additive for the diesel fuel) on engine performance and exhaust emissions in a small diesel engine. For this aim five-test fuels, B5 (contains 5% n-butanol and 95% diesel fuel in volume basis), B10, B15, B20 and neat diesel fuel, were prepared to test in a diesel engine. Tests were performed in a single cylinder, four stroke, unmodified, and naturally aspirated DI high speed diesel engine at constant engine speed (2600 rpm) and four different engine loads by using five-test fuels. The experimental test results showed that smoke opacity, nitrogen oxides, and carbon monoxide emissions reduced while hydrocarbon emissions increased with the increasing n-butanol content in the fuel blends. In addition, there is an increase in the brake specific fuel consumption and in the brake thermal efficiency with increasing n-butanol content in fuel blends. Also, exhaust gas temperature decreased with increasing n-butanol content in the fuel blends. 相似文献
13.
Safflower seed oil was chemically treated by the transesterification reaction in methyl alcohol environment with sodium hydroxide (NaOH) to produce biodiesel. The produced biodiesel was blended with diesel fuel by 5% (B5), 20% (B20) and 50% (B50) volumetrically. Some of important physical and chemical fuel properties of blend fuels, pure biodiesel and diesel fuel were determined. Performance and emission tests were carried out on a single cylinder diesel engine to compare biodiesel blends with petroleum diesel fuel. Average performance reductions were found as 2.2%, 6.3% and 11.2% for B5, B20 and B50 fuels, respectively, in comparison to diesel fuel. These reductions are low and can be compensated by a slight increase in brake specific fuel consumption (Bsfc). For blends, Bsfcs were increased by 2.8%, 3.9% and 7.8% as average for B5, B20 and B50, respectively. Considerable reductions were recorded in PM and smoke emissions with the use of biodiesel. CO emissions also decreased for biodiesel blends while NOx and HC emissions increased. But the increases in HC emissions can be neglected as they have very low amounts for all test fuels. It can be concluded that the use of safflower oil biodiesel has beneficial effects both in terms of emission reductions and alternative petroleum diesel fuel. 相似文献
14.
The effect of alkanol chain on the interfacial composition and thermodynamic properties of diesel oil microemulsion 总被引:1,自引:0,他引:1
The interfacial and thermodynamic properties of water/cetyltrimethylammonium chlorine (CTAC)/alkanol/diesel oil w/o microemulsion systems were investigated by the method of dilution. Alkanols with different carbon numbers (n-butanol, n-pentanol, iso-pentanol, n-hexanol, n-octanol) were used to investigate the effect of cosurfactant on the formation of diesel oil microemulsion. The composition of the cosurfactant and the surfactant in the interfacial region, the distribution of the cosurfactant between the interfacial region and the continuous oil phase, and the energetics of transfer of the cosurfactant from the oil to the interface were estimated. 相似文献
15.
In the effort to reduce pollutant emissions from diesel engines various solutions have been proposed, one of which is the use of natural gas as supplement to liquid diesel fuel, with these engines referred to as fumigated, dual fuel, compression ignition engines. One of the main purposes of using natural gas in dual fuel (liquid and gaseous one) combustion systems is to reduce particulate emissions and nitrogen oxides. Natural gas is a clean burning fuel; it possesses a relatively high auto-ignition temperature, which is a serious advantage over other gaseous fuels since then the compression ratio of most conventional direct injection (DI) diesel engines can be maintained high. In the present work, an experimental investigation has been conducted to examine the effects of the total air-fuel ratio on the efficiency and pollutant emissions of a high speed, compression ignition engine located at the authors’ laboratory, where liquid diesel fuel is partially substituted by natural gas in various proportions, with the natural gas fumigated into the intake air. The experimental results disclose the effect of these parameters on brake thermal efficiency, exhaust gas temperature, nitric oxide, carbon monoxide, unburned hydrocarbons and soot emissions, with the beneficial effect of the presence of natural gas being revealed. Given that the experimental measurements cover a wide range of liquid diesel supplementary ratios without any appearance of knocking phenomena, the belief is strengthened that the findings of the present work can be very valuable if opted to apply this technology on existing DI diesel engines. 相似文献
16.
17.
Effects of biodiesel on a DI diesel engine performance, emission and combustion characteristics 总被引:4,自引:0,他引:4
Ekrem Buyukkaya 《Fuel》2010,89(10):3099-3105
Experimental tests were investigated to evaluate the performance, emission and combustion of a diesel engine using neat rapeseed oil and its blends of 5%, 20% and 70%, and standard diesel fuel separately. The results indicate that the use of biodiesel produces lower smoke opacity (up to 60%), and higher brake specific fuel consumption (BSFC) (up to 11%) compared to diesel fuel. The measured CO emissions of B5 and B100 fuels were found to be 9% and 32% lower than that of the diesel fuel, respectively. The BSFC of biodiesel at the maximum torque and rated power conditions were found to be 8.5% and 8% higher than that of the diesel fuel, respectively. From the combustion analysis, it was found that ignition delay was shorter for neat rapeseed oil and its blends tested compared to that of standard diesel. The combustion characteristics of rapeseed oil and its diesel blends closely followed those of standard diesel. 相似文献
18.
Emission problems associated with the use of fossil fuels have led to numerous research projects on the use of renewable fuels. The aim of this study is to evaluate the effects of blends containing croton mogalocarpus oil (CRO)-Butanol (BU) alcohol-diesel (D2) on engine performance, combustion, and emission characteristics. Samples investigated were 15%CRO-5%BU-80%D2, 10%CRO-10%BU-80%D2, and diesel fuel (D2) as a baseline. The density, viscosity, cetane number CN, and contents of carbon, hydrogen, and oxygen were measured according to ASTM standards. A four cylinder turbocharged direct injection (TDI) diesel engine was used for the tests. It was observed that brake specific energy consumption (BSEC) of blends was found to be high when compared with that of D2 fuel. Butanol containing blends show peak cylinder pressure and heat release rate comparable to that of D2 on higher engine loads. Carbon dioxide (CO2) and smoke emissions of the BU blends were lower in comparison to D2 fuel. 相似文献
19.
Investigation of the performance and emissions of bus engine operating on butanol/diesel fuel blends 总被引:2,自引:0,他引:2
An experimental investigation is conducted to evaluate the effects of using blends of n-butanol (normal butanol) with conventional diesel fuel, with 8% and 16% (by vol.) n-butanol, on the performance and exhaust emissions of a fully instrumented, six-cylinder, water-cooled, turbocharged and after-cooled, heavy duty, direct injection (DI), Mercedes-Benz engine, installed at the authors’ laboratory, which is used to power the mini-bus diesel engines of the Athens Urban Transport Organization sub-fleet. The tests are conducted using each of the above fuel blends, with the engine working at two speeds and three loads. Fuel consumption, exhaust smokiness and exhaust regulated gas emissions such as nitrogen oxides, carbon monoxide and total unburned hydrocarbons are measured. The differences in the measured performance and exhaust emissions of the two butanol/diesel fuel blends from the baseline operation of the engine, i.e. when working with neat diesel fuel, are determined and compared. It is revealed that this fuel, which can be produced from biomass (bio-butanol), is a very promising bio-fuel for diesel engines. The differing physical and chemical properties of n-butanol against those for the diesel fuel, aided by sample cylinder pressure and heat release rate diagrams, are used to interpret the observed engine behavior. 相似文献
20.
Experimental investigation of port injection of acetylene in DI diesel engine in dual fuel mode 总被引:1,自引:0,他引:1
As the world finds itself in the midst of universal energy shortage, compounded by a parallel need to reduce pollutants of all kinds; we must take serious look at novel sources of abundant energy and methodology of its use. Acetylene with its remarkable combustion properties appear to be proving itself as the best fuel for future internal engines if it is utilised properly. Because of inherent difficulties in handling acetylene, technology has emphasized the utilization of acetylene by injection techniques to combat back fire in internal combustion engines. An experimental investigation was carried out on a single cylinder, air cooled, DI diesel engine designed to develop 4.4 kW at 1500 rpm. Acetylene was injected into the intake port as a secondary fuel and diesel was injected directly into the cylinder. The optimized injection time of 5° aTDC and injection duration of 90 °CA (9.9 ms) was arrived. The gas flow rate was fixed at 110 g/h, 180 g/h and 240 g/h. The combustion, performance and emission parameters were studied for the above flow rates by varying the load from low load to full load. Results show that NOx, HC and CO emissions reduced when compared to diesel operation due to leaner operation. A marginal increase in smoke emission was observed and brake thermal efficiency was nearer to diesel operation. On the whole it is concluded that without loss in thermal efficiency, safe operation of acetylene is possible in timed port injection technique. Reduced NOx, HC and CO emission levels, with marginal increase in smoke emission level were achieved. 相似文献