首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Seawater is the most abundant natural water resource in the world, which is an inexhaustible and low-cost feedstock for hydrogen production by alkaline water electrolysis. It is appearling to develop robust and stable electrocatalysts for alkaline seawater electrolysis. However, the development of seawater electrolysis is seriously impeded by anodic chloride corrosion and chlorine evolution reaction, and few non-noble electrocatalysts show prominent catalytic performance and excellent durability. Here, a heterogeneous electrocatalyst constructed by in situ growing highly dispersed iron-rich bimetallic phosphide nanoparticles on metallic Ni3N (Fe2−2xCo2xP/Ni3N), which exhibits outstanding bifunctional catalytic activities for alkaline seawater splitting, is reported. The optimal (Fe0.74Co0.26)2P/Ni3N and Fe2P/Ni3N electrocatalysts demand only 113 and 212 mV to afford 100 mA cm−2 for hydrogen and oxygen evolution reactions (HER and OER) in 1 m KOH, respectively, thus substantially expediting overall water/seawater electrolysis at 100 mA cm−2 with 1.592/1.645 V. Particularly, Fe2P/Ni3N displays an unprecedented overpotential of 302 mV at 500 mA cm−2, which represents the best alkaline seawater oxygen evolution activity among the ever-reported non-noble electrocatalysts; and thus substantially expedites overall water/seawater splitting at 500 mA cm−2 with 1.701/1.768 V, surpassing most of the reported non-noble lectrocatalysts. This work provides a new approach for developing high-performance electrocatalysts for seawater splitting.  相似文献   

2.
Versatile electrocatalysis at higher current densities for natural seawater splitting to produce hydrogen demands active and robust catalysts to overcome the severe chloride corrosion, competing chlorine evolution, and catalyst poisoning. Hereto, the core-shell-structured heterostructures composed of amorphous NiFe hydroxide layer capped Ni3S2 nanopyramids which are directly grown on nickel foam skeleton (NiS@LDH/NF) are rationally prepared to regulate cooperatively electronic structure and mass transport for boosting oxygen evolution reaction (OER) performance at larger current densities. The prepared NiS@LDH/NF delivers the anodic current density of 1000 mA cm−2 at the overpotential of 341 mV in 1.0 m KOH seawater. The feasible surface reconstruction of Ni3S2-FeNi LDH interfaces improves the chemical stability and corrosion resistance, ensuring the robust electrocatalytic activity in seawater electrolytes for continuous and stable oxygen evolution without any hypochlorite production. Meanwhile, the designed Ni3S2 nanopyramids coated with FeNi2P layer (NiS@FeNiP/NF) still exhibit the improved hydrogen evolution reaction (HER) activity in 1.0 m KOH seawater. Furthermore, the NiS@FeNiP/NF||NiS@LDH/NF pair requires cell voltage of 1.636 V to attain 100 mA cm−2 with a 100% Faradaic efficiency, exhibiting tremendous potential for hydrogen production from seawater.  相似文献   

3.
Water electrolysis is an ideal method for industrial green hydrogen production. However, due to increasing scarcity of freshwater, it is inevitable to develop advanced catalysts for electrolyzing seawater especially at large current density. This work reports a unique Ru nanocrystal coupled amorphous-crystal Ni(Fe)P2 nanosheet bifunctional catalyst (Ru-Ni(Fe)P2/NF), caused by partial substitution of Fe to Ni atoms in Ni(Fe)P2, and explores its electrocatalytic mechanism by density functional theory (DFT) calculations. Owing to high electrical conductivity of crystalline phases, unsaturated coordination of amorphous phases, and couple of Ru species, Ru-Ni(Fe)P2/NF only requires overpotentials of 375/295 and 520/361 mV to drive a large current density of 1 A cm−2 for oxygen/hydrogen evolution reaction (OER/HER) in alkaline water/seawater, respectively, significantly outperforming commercial Pt/C/NF and RuO2/NF catalysts. In addition, it maintains stable performance at large current density of 1 A cm−2 and 600 mA cm−2 for 50 h in alkaline water and seawater, respectively. This work provides a new way for design of catalysts toward industrial-level seawater splitting.  相似文献   

4.
Coupling urea oxidation reaction (UOR) and hydrogen evolution reaction (HER) is promising for energy-efficient hydrogen production. However, developing cheap and highly active bifunctional electrocatalysts for overall urea electrolysis remains challenging. In this work, a metastable Cu0.5Ni0.5 alloy is synthesized by a one-step electrodeposition method. It only requires the potentials of 1.33 and −28 mV to obtain the current density of ±10 mA cm−2 for UOR and HER, respectively. The metastable alloy is considered to be the main reason causing the above excellent performances. In the alkaline medium, the as-prepared Cu0.5Ni0.5 alloy exhibits good stability for HER; and conversely, NiOOH species can be rapidly formed during the UOR due to the phase segregation of Cu0.5Ni0.5 alloy. In particular, for the energy-saving hydrogen generation system coupled with HER and UOR, only 1.38 V of voltage is needed at 10 mA cm−2; and at 100 mA cm−2, the voltage decreases by ≈305 mV compared with that of the routine water electrolysis system (HER || OER). Compared with some catalysts reported recently, the Cu0.5Ni0.5 catalyst owns superior electrocatalytic activity and durability. Furthermore, this work provides a simple, mild, and rapid method for designing highly active bifunctional electrocatalysts toward urea-supporting overall water splitting.  相似文献   

5.
Alkaline membrane water electrolysis is a promising production technology, and advanced electrocatalyst and membrane electrode design have always been the core technology. Herein, an ion-exchange method and an environmentally friendly in situ green phosphating strategy are successively employed to fabricate Ru-Ru2P heterogeneous nanoparticles by using hydroxyapatite (HAP) as a phosphorus source, which is an exceptionally active electrocatalyst for hydrogen evolution reaction (HER). Density functional theory calculation results reveal that strong electronic redistribution occurs at the heterointerface of Ru-Ru2P, which modulates the electronic structure to achieve an optimized hydrogen adsorption strength. The obtained Ru-Ru2P possesses excellent HER performance (24 mV at 10 mA cm−2) and robust stability (1000 mA cm−2 for 120 h) in alkaline media. Furthermore, an environmentally friendly membrane electrode with a sandwich structure is assembled by HAP nanowires as an alkaline membrane, Ru-Ru2P as a cathodic catalyst, and NiFe-LDH as an anodic catalyst, respectively. The voltage of (−) Ru-Ru2P || NiFe-LDH/CNTs (+) (1.53 V at 10 mA cm−2) is lower than that of (−) 20 wt% Pt/C || RuO2 (+) (1.60 V at 10 mA cm−2) for overall water splitting. Overall, the studies not only design an efficient catalyst but also provide a new route to achieve a high-stability electrolyzer for industrial H2 production.  相似文献   

6.
Urea-assisted hybrid water splitting is a promising technology for hydrogen (H2) production, but the lack of cost-effective electrocatalysts hinders its extensive application. Herein, it is reported that Nitrogen-doped Co9S8/Ni3S2 hybrid nanosheet arrays on nickel foam (N-Co9S8/Ni3S2/NF) can act as an active and robust bifunctional catalyst for both urea oxidation reaction (UOR) and hydrogen evolution reaction (HER), which could drive an ultrahigh current density of 400 mA cm−2 at a low working potential of 1.47 V versus RHE for UOR, and gives a low overpotential of 111 mV to reach 10 mA cm−2 toward HER. Further, a hybrid water electrolysis cell utilizing the synthesized N-Co9S8/Ni3S2/NF electrode as both the cathode and anode displays a low cell voltage of 1.40 V to reach 10 mA cm−2, which can be powered by an AA battery with a nominal voltage of 1.5 V. The density functional theory (DFT) calculations decipher that N-doped heterointerfaces can synergistically optimize Gibbs free energy of hydrogen and urea, thus accelerating the catalytic kinetics of HER and UOR. This work significantly advances the development of the promising cobalt–nickel-based sulfide as a bifunctional electrocatalyst for energy-saving electrolytic H2 production and urea-rich innocent wastewater treatment.  相似文献   

7.
Exploiting active and stable non-precious metal electrocatalysts for alkaline hydrogen evolution reaction (HER) at large current density plays a key role in realizing large-scale industrial hydrogen generation. Herein, a self-supported microporous Ni(OH)x/Ni3S2 heterostructure electrocatalyst on nickel foam (Ni(OH)x/Ni3S2/NF) that possesses super-hydrophilic property through an electrochemical process is rationally designed and fabricated. Benefiting from the super-hydrophilic property, microporous feature, and self-supported structure, the electrocatalyst exhibits an exceptional HER performance at large current density in 1.0 M KOH, only requiring low overpotential of 126, 193, and 238 mV to reach a current density of 100, 500, and 1000 mA cm−2, respectively, and displaying a long-term durability up to 1000 h, which is among the state-of-the-art non-precious metal electrocatalysts. Combining hard X-rays absorption spectroscopy and first-principles calculation, it also reveals that the strong electronic coupling at the interface of the heterostructure facilitates the dissociation of H2O molecular, accelerating the HER kinetics in alkaline electrolyte. This work sheds a light on developing advanced non-precious metal electrocatalysts for industrial hydrogen production by means of constructing a super-hydrophilic microporous heterostructure.  相似文献   

8.
Iron oxyhydroxide has been considered an auspicious electrocatalyst for the oxygen evolution reaction (OER) in alkaline water electrolysis due to its suitable electronic structure and abundant reserves. However, Fe-based materials seriously suffer from the tradeoff between activity and stability at a high current density above 100 mA cm−2. In this work, the Ce atom is introduced into the amorphous iron oxyhydroxide (i.e., CeFeOxHy) nanosheet to simultaneously improve the intrinsic electrocatalytic activity and stability for OER through regulating the redox property of iron oxyhydroxide. In particular, the Ce substitution leads to the distorted octahedral crystal structure of CeFeOxHy, along with a regulated coordination site. The CeFeOxHy electrode exhibits a low overpotential of 250 mV at 100 mA cm−2 with a small Tafel slope of 35.1 mVdec−1. Moreover, the CeFeOxHy electrode can continuously work for 300 h at 100 mA cm−2. When applying the CeFeOxHy nanosheet electrode as the anode and coupling it with the platinum mesh cathode, the cell voltage for overall water splitting can be lowered to 1.47 V at 10 mA cm−2. This work offers a design strategy for highly active, low-cost, and durable material through interfacing high valent metals with earth-abundant oxides/hydroxides.  相似文献   

9.
High-entropy oxides (HEO) have recently concerned interest as the most promising electrocatalytic materials for oxygen evolution reactions (OER). In this work, a new strategy to the synthesis of HEO nanostructures on Ti3C2Tx MXene via rapid microwave heating and subsequent calcination at a low temperature is reported. Furthermore, the influence of HEO loading on Ti3C2Tx MXene is investigated toward OER performance with and without visible-light illumination in an alkaline medium. The obtained HEO/Ti3C2Tx-0.5 hybrid exhibited an outstanding photoelectrochemical OER ability with a low overpotential of 331 mV at 10 mA cm−2 and a small Tafel slope of 71 mV dec−1, which exceeded that of a commercial IrO2 catalyst (340 mV at 10 mA cm−2). In particular, the fabricated water electrolyzer with the HEO/Ti3C2Tx-0.5 hybrid as anode required a less potential of 1.62 V at 10 mA cm−2 under visible-light illumination. Owing to the strong synergistic interaction between the HEO and Ti3C2Tx MXene, the HEO/Ti3C2Tx hybrid has a great electrochemical surface area, many metal active sites, high conductivity, and fast reaction kinetics, resulting in an excellent OER performance. This study offers an efficient strategy for synthesizing HEO-based materials with high OER performance to produce high-value hydrogen fuel.  相似文献   

10.
The α-Ni(OH)2 is regarded as one promising cathode for aqueous nickel-zinc batteries due to its high theoretical capacity of ≈480 mAh g−1, its practical deployment however suffers from the poor stability in strong alkaline solution, intrinsic low electrical conductivity as well as the retarded ionic diffusion. Herein, a 3D (three dimensional) macroporous α-Ni(OH)2 nanosheets with Co doping is designed through a facile and easily scalable electroless plating combined with electrodeposition strategy. The unique micrometer-sized 3D pores come from Ni substrate and rich voids between Co-doping α-Ni(OH)2 nanosheets can synergistically afford facile, interconnected ionic diffusion channels, sufficient free space for accommodating its volume changes during cycling; meanwhile, the Co-doping can stabilize the structural robustness of the α-Ni(OH)2 in the alkaline electrolyte during cycling. Thus, the 3D α-Ni(OH)2 shows a high capacity of 284 mAh g−1 at 0.5 mA cm−2 with an excellent retention of 78% even at 15 mA cm−2, and more than 2000 stable cycles at 6 mA cm−2, as well as the robust cycling upon various flexible batteries. This work provides a simple and efficient pathway to enhance the electrochemical performance of Ni-Zn batteries through improving ionic transport kinetics and stabilizing crystal structure of cathodes.  相似文献   

11.
Single atoms are superior electrocatalysts having high atomic utilization and amazing activity for water oxidation and splitting. Herein, this work reports a thermal reduction method to introduce high-valence iridium (Ir) single atoms into bimetal phosphide (FeNiP) nanoparticles toward high-efficiency oxygen evolution reaction (OER) and overall water splitting. The presence of high-valence single Ir atoms (Ir4+) and their synergistic interaction with Ni3+ species as well as the disproportionation of Ni3+ assisted by Fe collectively contribute to the exceptional OER performance. In specific, at appropriate Ir/Ni and Fe/Ni ratios, the as-prepared Ir-doped FeNiP (Ir25-Fe16Ni100P64) nanoparticles at a mass loading of only 35 µg cm−2 show the overpotential as low as 232 mV at 10 mA cm−2 and activity as high as 1.86 A mg−1 at 1.5 V versus RHE for OER in 1.0 m KOH. Computational simulations confirm the vital role of high-valence Ir to weaken the adsorption of OER intermediates, favorable for accelerating OER kinetics. Impressively, a Pt/C||Ir25-Fe16Ni100P64 two-electrode alkaline electrolyzer affords a current density of 10 mA cm−2 at a low cell voltage of 1.42 V, along with satisfied stability. An AA battery with a nominal voltage of 1.5 V can drive overall water splitting with obvious bubbles released.  相似文献   

12.
Designing robust electrocatalysts for water-splitting is essential for sustainable hydrogen generation, yet difficult to accomplish. In this study, a fast and facile two-step technique to synthesize Ru/RuO2 aerogels for catalyzing overall water-splitting under alkaline conditions is reported. Benefiting from the synergistic combination of high porosity, heterointerface, and tensile strain effects, the Ru/RuO2 aerogel exhibits low overpotential for oxygen evolution reaction (189 mV) and hydrogen evolution reaction (34 mV) at 10 mA cm−2, surpassing RuO2 (338 mV) and Pt/C (53 mV), respectively. Notably, when the Ru/RuO2 aerogels are applied at the anode and cathode, the resultant water-splitting cell reflected a low potential of 1.47 V at 10 mA cm−2, exceeding the commercial Pt/C||RuO2 standard (1.63 V). X-ray adsorption spectroscopy and theoretical studies demonstrate that the heterointerface of Ru/RuO2 optimizes charge redistribution, which reduces the energy barriers for hydrogen and oxygen intermediates, thereby enhancing oxygen and hydrogen evolution reaction kinetics.  相似文献   

13.
Developing low-cost and high-performance transition metal-based electrocatalysts is crucial for realizing sustainable hydrogen evolution reaction (HER) in alkaline media. Here, a cooperative boron and vanadium co-doped nickel phosphide electrode (B, V-Ni2P) is developed to regulate the intrinsic electronic configuration of Ni2P and promote HER processes. Experimental and theoretical results reveal that V dopants in B, V-Ni2P greatly facilitate the dissociation of water, and the synergistic effect of B and V dopants promotes the subsequent desorption of the adsorbed hydrogen intermediates. Benefiting from the cooperativity of both dopants, the B, V-Ni2P electrocatalyst requires a low overpotential of 148 mV to attain a current density of −100 mA cm−2 with excellent durability. The B, V-Ni2P is applied as the cathode in both alkaline water electrolyzers (AWEs) and anion exchange membrane water electrolyzers (AEMWEs). Remarkably, the AEMWE delivers a stable performance to achieve 500 and 1000 mA cm−2 current densities at a cell voltage of 1.78 and 1.92 V, respectively. Furthermore, the developed AWEs and AEMWEs also demonstrate excellent performance for overall seawater electrolysis.  相似文献   

14.
Developing efficient oxygen evolution reaction (OER) electrocatalysts for seawater electrolysis is still a big challenge. Herein, a facile one-pot approach is reported to synthesize RuO2-incorporated NiFe-metal organic framework (RuO2/NiFe-MOF) with unique nanobrick-nanosheet heterostructure as precatalyst. Driven by electric field, the RuO2/NiFe-MOF dynamically reconstructs into RuO2 nanoparticles-anchored NiFe oxy/hydroxide nanosheets (RuO2/NiFeOOH) with coherent interface, during which the dissolution and redeposition of RuO2 are witnessed. Owing to the synergistic interaction between RuO2 and NiFeOOH, the as-reconstructed RuO2/NiFeOOH exhibits outstanding alkaline OER activity with an ultralow overpotential of 187.6 mV at 10 mA cm−2 and a small Tafel slope of 31.9 mV dec−1 and excellent durability at high current densities of 840 and 1040 mA cm−2 in 1 m  potassium hydroxide (KOH). When evaluated for seawater oxidation, the RuO2/NiFeOOH only needs a low overpotential of 326.2 mV to achieve 500 mA cm−2 and can continuously catalyze OER at 500 mA cm−2 for 100 h with negligible activity degradation. Density function theory calculations reveal that the presence of strong interaction and enhanced charge transfer along the coherent interface between RuO2 and NiFeOOH ensures improved OER activity and stability.  相似文献   

15.
It is extremely crucial to design and match high-quality cathode and anode for achieving high-performance asymmetric supercapacitors (ASCs). Herein, Co3(PO4)2@NiCo-LDH/Ni foam (CP@NCOH/NF) cathode with hierarchical morphology and graphene hydrogel/Fe–Ni phosphide/Ni foam (GH/FNP/NF) anode with the robust and porous structure are elaborately designed and prepared, respectively. Owing to their unique and profitable structures, both CP@NCOH/NF and GH/FNP/NF electrodes yield the superior capacity (10760 and 2236 mC cm−2 at 2 mA cm−2, respectively), good rate capability (63% retention at 200 mA cm−2 and 52% retention at 50 mA cm−2, respectively), and excellent cycling stability (72% and 74% retention after 10 000 cycles, respectively). Benefiting from their matchable electrochemical performances, the configured solid-state CP@NCOH/NF//GH/FNP/NF ASC outputs both competitive energy density (80.2 Wh kg−1/4.1 mWh cm−3) and power density (14563 W kg−1/750 mW cm−3), companied by remarkable cyclability (71% retention after 10 000 cycles), manifesting its great promise for large-scale integrated energy-storage system.  相似文献   

16.
Light-weight and flexible supercapacitors with outstanding electrochemical performances are strongly desired in portable and wearable electronics. Here, ultralight nitrogen-doped carbon macrotube (N-CMT) sponges with 3D interconnected macroporous structures are fabricated and used as substrate to grow nickel ferrite (NiFe2O4) nanoparticles by vapor diffusion–precipitation and in situ growth. This process effectively suppresses the agglomeration of NiFe2O4, enabling good interfacial contact between N-CMT sponges and NiFe2O4. More remarkably, the as-synthesized NiFe2O4/N-CMT composite sponges can be directly used as electrodes without additional processing that could cause agglomeration and reduction of active sites. Benefiting from the tubular structure and the synergetic effect of NiFe2O4 and N-CMT, the NiFe2O4/N-CMT-2 exhibits a high specific capacitance of 715.4 F g−1 at a current density of 1 A g−1, and 508.3 F g−1 at 10 A g−1, with 90.9% of capacitance retention after 50 000 cycles at 1 A g−1 in an alkaline electrolyte. Furthermore, flexible supercapacitors are fabricated, yielding areal specific capacitances of 1397.4 and 1041.2 mF cm−2 at 0.5 and 8 mA cm−2, respectively. They also exhibit exceptional cycling performance with capacitance retention of 92.9% at 1 mA cm−2 after 10 000 cycles under bending. This work paves a new way to develop flexible, light-weight, and high-performance energy storage devices.  相似文献   

17.
NiFe-based (oxy)hydroxides are the benchmark catalysts for the oxygen evolution reaction (OER) in alkaline medium, however, it is still challenging to control their structures and compositions. Herein, molybdates (NiFe(MoO4)x) are applied as unique precursors to synthesize ultrafine Mo modified NiFeOxHy (oxy)hydroxide nanosheet arrays. The electrochemical activation process enables the molybdate ions (MoO42−) in the precursors gradually dissolve, and at the same time, hydroxide ions (OH) in the electrolyte diffuse into the precursor and react with Ni2+ and Fe3+ ions in confined space to produce ultrafine NiFeOxHy (oxy)hydroxides nanosheets (<10 nm), which are densely arranged into microporous arrays and maintain the rod-like morphology of the precursor. Such dense ultrafine nanosheet arrays produce rich edge planes on the surface of NiFeOxHy (oxy)hydroxides to expose more active sites. More importantly, the capillary phenomenon of microporous structures and hydrophilic hydroxyl groups induce the superhydrophilicity and the rough surface produces the superaerophobic characteristic for bubbles. With these advantages, the optimized catalyst exhibits excellent performance for OER, with a small overpotential of 182 mV at 10 mA cm−2 and long-term stability (200 h) at 200 mA cm−2. Theoretical calculations show that the modification of Mo enhances the electron delocalization and optimizes the adsorption of intermediates.  相似文献   

18.
Bimetallic layered double hydroxides (LDHs) are promising catalysts for anodic oxygen evolution reaction (OER) in alkaline media. Despite good stability, NiCo LDH displays an unsatisfactory OER activity relative to the most robust NiFe LDH and CoFe LDH. Herein, a novel NiCo LDH electrocatalyst modified with single-atom silver grown on carbon cloth (AgSA-NiCo LDH/CC) that exhibits exceptional OER activity and stability in 1.0 m KOH is reported. The AgSA-NiCo LDH/CC catalyst only requires a low overpotential of 192 mV to reach a current density of 10 mA cm−2, obviously boosting the OER activity of NiCo LDH/CC (410 mV@10 mA cm−2). Inspiringly, AgSA-NiCo LDH/CC can maintain its high activity for up to 500 h at a large current density of 100 mA cm−2, exceeding most single-atom OER catalysts. In situ Raman spectroscopy studies uncover that the in situ formed NiCoOOH during OER is the real active species. Hard X-ray absorption spectrum (XAS) and density functional theory (DFT) calculations validate that single-atom Ag occupying Ni site increases the chemical valence of Ni elements, and then weakens the adsorption of oxygen-contained intermediates on Ni sites, fundamentally accounting for the enhanced OER performance.  相似文献   

19.
Reported herein is comprehensive study of a highly active and stable cobalt catalyst for overall water splitting. This composite SFCNF/Co1?xS@CoN, consisting of S‐doped flexible carbon nanofiber (SFCNF) matrix, Co1?xS nanoparticles, and CoN coatings, is prepared by integration of electrospinning and atomic layer deposition (ALD) technique. Representative results include the following: 1) ultrathin CoN layer is deposited by ALD on the surface of flexible substrate without any sacrifice of SFCNF and Co1?xS; 2) the composite exhibits strong electrocatalytic activity in both acidic and basic solutions. The overpotentials of hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) are 20 and 180 mV, respectively, at a current density of 10 mA cm?2 in basic medium. A small Tafel slope of 54.4 mV dec?1 is observed in 0.5 m H2SO4 electrolyte; 3) tested as overall water splitting electrode, the composite records a current density of 10 mA cm?2 at a relative low cell voltage of 1.58 V and long‐term stability for 20 h at a current density of up to 50 mA cm?2. The superior performance for overall water splitting is probably attributed to the synergistic effect of Co1?xS and ALD CoN. Specifically, implementation of ALD can be extended to innovate nanostructured materials for overall water splitting and even other renewable energy aspects.  相似文献   

20.
Developing high-performance electrocatalysts toward hydrogen evolution reaction (HER) is important for clean and sustainable hydrogen energy, yet still challenging. Herein, an α-MoC1 - x induced redispersing strategy to construct a superior HER electrocatalyst (Pt/CNTs-N + α-MoC1 - x) by mechanical mixing of α-MoC1 - x with Pt/CNTs-N followed by thermal reduction is reported. It is found that thermo-activation treatment enables partial Pt atoms to redisperse on α-MoC1 - x substrate from carbon nanotubes, which creates dual active interfaces of Pt species dispersed over carbon nanotubes and α-MoC1 - x. Benefiting from the strong electronic interaction between the Pt atom and α-MoC1 - x, the utilization efficiency of the Pt atom and the zero-valence state of Pt is evidently enhanced. Consequently, Pt/CNTs-N + α-MoC1 - x catalyst exhibits excellent HER activity with low overpotentials of 17 and 34 mV to achieve a current density of 10 mA cm−2 in acidic and alkaline electrolytes, respectively. Density functional theory calculations further reveal that the synergistic effect between Pt and α-MoC1 - x makes it accessible for the dissociation of water molecules and subsequent desorption of hydrogen atoms. This work reveals the crucial roles of α-MoC1 - x additives, providing practical solutions to enhance platinum dispersion, and thereby enhance the catalytic activity in HER.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号