首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 922 毫秒
1.
The present study was conducted to examine the effect of different washing processes on fuel properties in biodiesel produced from camelina oil through transesterification. For this purpose, dry washing with Magnesol, washing with Na2SO4, washing with water, and unwashing methods were compared. In dry washing with Magnesol, density, KV, CP, CFPP, PP, FP, and heating value (HV) were found to be 0.887 g/cm3, 5.090 mm2/s, 1°C, –4°C, –7°C, 165°C, and 41 MJ/kg, respectively. The effect of flash point (FP), density and kinematic viscosity (KV) on heating value (HV) was investigated and the regression among these values was determined. The r2 was 0.953 and corrected r2 was found to be 0.810. The effect of cloud point (CP), CFPP, and kinematic viscosity (KV) on PP (pour point) values was examined and the regression among these values was determined. The r2 was found to be 0.999 and corrected r2 was found to be 0.995.  相似文献   

2.
Biodiesel, defined as mono-alkyl esters of long-chain fatty acids derived from vegetable oils or animal fats, is an attractive renewable fuel alternative to conventional petroleum diesel fuel. Biodiesel produced from oils such as cottonseed oil and poultry fats suffer from extremely poor cold flow properties because of their high saturated fatty acid content. In the current study, Ethyl Levulinate (ethyl 4-oxopentanoate) was investigated as a novel, bio-based cold flow improver for use in biodiesel fuels. The cloud (CP), pour (PP), and cold filter plugging points (CFPP) of biodiesel fuels prepared from cottonseed oil and poultry fat were improved upon addition of ethyl levulinate at 2.5, 5.0, 10.0, and 20.0% (vol). Reductions of 4-5 °C in CP, 3-4 °C in PP and 3 °C in CFPP were observed at 20 vol % ethyl levulinate. The influence of ethyl levulinate on acid value, induction period, kinematic viscosity and flash point was determined. The kinematic viscosities and flash points decreased with increasing content of ethyl levulinate. All samples (≤15 vol % ethyl levulinate) satisfied the ASTM D6751 limit with respect to flash point, but none of the 20 vol % blends were acceptable when compared to the higher EN 14214 specification. Acid value and oxidative stability were essentially unchanged upon addition of ethyl levulinate. In summary, ethyl levulinate appears acceptable as a diluent for biodiesel fuels with high saturated fatty acid content.  相似文献   

3.
The present work is definitely an approach towards attaining price competency of bio-diesel to petroleum diesel. The oils extracted from abundantly available waste of Zahidi, Basra and Khazravi date seeds were used to produce biodiesel using acid (HCl), base (KOH), immobilized enzyme (lipase), immobilized enzyme/acid (lipase/HCl) and immobilized enzyme/base (lipase/KOH) catalyzed processes. Mixed catalysis (immobilized enzyme + acid or immobilized enzyme + base) resulted in better yields in comparison to acid or base catalysis. The properties of biodiesel were evaluated by fuel standard tests and the results were compared with EN14214 and ASTM D6751 standards. Biodiesel produced from date seed oil was found to have a high cetane number (55–60.3), low iodine value (44–50) and good flash point (135–140 °C). Pour point of pure biodiesel produced from Khazravi and Zahidi was found to range from 2 to −2 °C. Biodiesel produced from Basra exhibited good pour point (−4.7 to −8.3 °C) in comparison to other varieties. The components present in biodiesel produced from various date varieties were determined by gas chromatographic-mass spectrometric analyses (GCMS). The fatty acid (%) detected in date seed biodiesel were oleic acid (33.4–47.4), lauric acid (19–28), palmitic acid (13.6–19.2), myristic acid (13.6–17.44) and linoleic acid (6.4–8.5). A special feature of date seed oil biodiesel was the presence of considerable amounts of low chain fatty acids.  相似文献   

4.
The low temperature operability, kinematic viscosity, and acid value of poultry fat methyl esters were improved with addition of ethanol, isopropanol, and butanol with increasing alcohol content. The flash point decreased and moisture content increased upon addition of alcohols to poultry fat methyl esters. The alcohol type did not result in a statistically significant difference in low temperature performance at similar blend ratios in poultry fat methyl esters. In addition, blends of ethanol in poultry fat methyl esters afforded the least viscous mixtures, whereas isopropanol and butanol blends were progressively more viscous, but still within specifications contained in ASTM D6751 and EN 14214. Blends of alcohols in poultry fat methyl esters resulted in failure of the flash point specifications found in ASTM D6751 and EN 14214. Flash points of butanol blends were superior to those of isopropanol and ethanol blends, with the 5 vol.% butanol blend exhibiting a flash point (57 °C) superior to that of No. 2 diesel fuel (52 °C). Blends of alcohols in poultry fat methyl esters resulted in an improvement in acid value with increasing content of alcohol. An increase in moisture content of biodiesel was observed with increasing alcohol content, with the effect being more pronounced in ethanol blends versus isopropanol and butanol blends. Finally, none of the alcohol–methyl ester samples exhibited a phase separation at sub-ambient temperatures.  相似文献   

5.
6.
Fuel characteristics of biodiesel derived from kernel oils of Sclerocarya birrea, Tylosema esculentum, Schiziophyton rautanenii and Jatropha curcas plants were investigated in comparison with petroleum diesel. The fuel properties under review include flash point, cloud point, kinematic viscosity, density, calorific value, acid value, and free fatty acids. These were determined and discussed in light of major biodiesel standards such as ASTM D 6751 (American Society for Testing and Materials) and EN 14214 (European standards). The best biofuel in terms of cold flow properties was S. rautanenii, with a cloud point of 0 °C and a pour point of −5 °C. The good cold flow properties demonstrate operational viability during the cold season. The heating values of S. birrea and S. rautanenii biodiesel fuels were found to be 9.2% and 10.3% lower than that of petroleum diesel while those of T. esculentum and J. curcas were both 9.7% lower. Other fuel properties analysed demonstrate that biodiesel fuels produced from kernel oils of S. birrea, T. esculentum, S. rautanenii and J. curcas plants have properties that are comparable to, and in some cases better than, those of petroleum diesel. The results of this study indicate the feasibility of producing quality biodiesel fuel from indigenous seed oils found in Botswana. A balanced allocation of resources however needs to be established to ensure that the cultivation of these oil-bearing plants does not compete with the cultivation of food crops.  相似文献   

7.
In this study, the effects of long-term storage on the viscosity and cold flow properties of biodiesel were investigated. Canola oil with a high content of unsaturated fatty acid was used to produce biodiesel in the experiments. Biodiesel sample was kept in ordinary atmospheric storage conditions for 6 months. The samples were taken from the biodiesel feedstock in every 30 days and cold flow properties and kinematic viscosity of the samples were measured. During 6-month storage, no significant deterioration was observed in cold flow properties and kinematic viscosity of biodiesel. Additionally, the same pour point (PP) and cold filter plugging point (CFPP) values (?11°C) were obtained during this period.  相似文献   

8.
In this study, the process of biodiesel production from safflower oil was optimized using a single-stage alkaline catalyst (NaOH). The optimization process was carried out depending on parameters, such as catalyst concentration, methanol-oil ratio, reaction temperature, and reaction time. The optimum biodiesel conversion efficiency was obtained to be 93.4% at 0.5% catalyst concentration, 20% methanol-oil ratio, 60 min reaction time, and 60°C reaction temperature. The fuel properties of biodiesel obtained under optimal conditions were determined.  相似文献   

9.
This paper presents experimental results regarding the impact of adding different tertiary amides of fatty acids to mineral diesel fuel; an assessment of the behaviour of these compounds as possible diesel fuel extenders is also included. Measurements of cetane number, cold flow properties (cloud point, pour point and CFPP), density, kinematic viscosity, flash point and distillation temperatures are reported, while initial experiments concerning the effects on particulate emissions are also described. Most of the examined tertiary fatty amides esters have very good performance and they can be easily prepared from fatty acids (biomass). Such compounds or their blends could be used as mineral diesel fuel or even fatty acid methylesters (FAME, biodiesel) substitutes or extenders. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

10.
Diesel is extensively used in India, however, also contribute to pollution. In this study, important physico-chemical properties of different ternary blends of diesel, waste cooking oil (WCO) biodiesel and n-octanol, are evaluated. Diesel and D80+WCB20+nO20 blend have almost similar density, calorific value, cetane index and CFPP. However, blends have higher kinematic viscosity and flash point as compared to diesel. GC-MS test shows the presence of 51.3% saturated and 44.24% unsaturated fatty acids. FTIR analysis shows a strong peak of carbonyl band at 1741 cm?1 which indicates the presence of biodiesel. Ternary blends are found to be a promising alternative to petroleum diesel.  相似文献   

11.
The present study deals with the production of biodiesel using waste fish oil. The research assesses the effect of the transesterification parameters on the biodiesel yield and its properties, including temperature (40–60 °C), molar ratio methanol to oil (3:1–9:1) and reaction time (30–90 min). The experimental results were fitted to complete quadratic models and optimized by response surface methodology. All the biodiesel samples presented a FAME content higher than 93 wt.% with a maximum, 95.39 wt.%, at 60 °C, 9:1 of methanol to oil ratio and 90 min. On the other hand, a maximum biodiesel yield was found at the same methanol to oil ratio and reaction time conditions but at lower temperature, 40 °C, which reduced the saponification of triglycerides by the alkaline catalyst employed. Adequate values of kinematic viscosity (measured at 30 °C) were obtained, with a minimum of 6.30 mm2/s obtained at 60 °C, 5.15:1 of methanol to oil ratio and 55.52 min. However, the oxidative stability of the biodiesels produced must be further improved by adding antioxidants because low values of IP, below 2.22 h, were obtained. Finally, satisfactory values of completion of melt onset temperature, ranging from 3.31 °C to 3.83 °C, were measured.  相似文献   

12.
To minimize use of biodiesels synthesized from edible oils like Palm due to raising food versus fuel issue, Palm biodiesel (PBD) was blended with biodiesels derived from tree borne non-edible oil seeds Jatropha, and Pongamia to examine the effect on cloud point (CP) and pour point (PP) of PBD. Dependence of CP and PP on esters of fatty acid composition was also examined. Good correlations between CP and palmitic acid methyl ester (PAME) and between PP and PAME were obtained. A correlation between CP and total unsaturated fatty acid methyl ester (X) was also obtained and correlation between PP and X was also determined. Using these four correlations, cloud and pour points of different biodiesel blends can be determined.  相似文献   

13.
Biodiesel production from non-edible Calophyllum inophyllum linn oil with high levels of Free Fatty Acid (FFA) (acid value −6.732 mg KOH/g of oil) was investigated using whole-cell biocatalysts. Rhizopus oryzae cells immobilized within reticulated polyurethane foams were used as biocatalysts for biodiesel production. The effects of reaction parameters such as methanol-to-oil molar ratio, water content, and temperature for the production of biodiesel through methanolysis in a packed-bed reactor (PBR) were studied. Molar ratio of methanol-to-oil – 12:1, water content – 15%v/v, cell concentration – 20% and temperature 35 °C were found to be the optimum. The yield of biodiesel obtained in batch methanolysis from C. inophyllum oil under optimized condition was 92%. Long-term stability of immobilized cells for methanolysis was verified using re-usability studies.  相似文献   

14.
There is a need to seek non-conventional seed oil sources for biodiesel production due to issues such as supply and availability as well as food versus fuel. In this context, Milo (Thespesia populnea L.) seed oil was investigated for the first time as a potential non-conventional feedstock for preparation of biodiesel. This is also the first report of a biodiesel fuel produced from a feedstock containing cyclic fatty acids as T. populnea contains 8,9-methylene-8-heptadecenoic (malvalic) and smaller amounts of two cyclopropane fatty acids besides greater amounts of linoleic, oleic and palmitic acids. The crude oil extracted from T. populnea seed was transesterified under standard conditions with sodium methoxide as catalyst. Biodiesel derived from T. populnea seed oil exhibited fuel properties of density 880 kg m−3, kinematic viscosity 4.25 mm2/s; cetane number 59.8; flash point 176 °C; cloud point 9 °C; pour point 8 °C; cold filter plugging point 9 °C; sulfur content 11 mg kg−1; water content 150 mg kg−1; ash content 15 mg kg−1; and acid value as KOH 250 mg kg−1. The oxidative stability of 2.91 h would require the use of antioxidants to meet specifications in standards. Generally, most results compared well with ASTM D6751 and EN 14214 specifications.  相似文献   

15.
The synthesis of biodiesel using rubber seed oil by a transesterification reaction using cement clinker catalysts was studied. The mineral composition and morphology of both the catalysts were analysed using X-ray diffraction and scanning electron microscopy. The gas chromatography–mass spectrometry, Fourier transform infrared spectroscopy and nuclear magnetic resonance studies were used to find the Fatty acid methyl ester content and various compounds of esters in the synthesised biodiesel, which showed an efficient conversion of rubber seed oil to biodiesel. The highest yield of 80% was obtained from calcium oxide catalyst (1.5?g) activated at 50°C with a methanol-to-oil ratio of 6:1. The highest yield of 70% biodiesel was obtained using a cement clinker catalyst (0.5?g) activated at 50°C with a methanol-to-oil ratio of 6:1. The significant physical properties of biodiesel flash point, acid value and saponification value were found, and the results are within the American standard test method (ASTM D6751) limits.  相似文献   

16.
Coriander (Coriandrum sativum L.) seed oil methyl esters were prepared and evaluated as an alternative biodiesel fuel and contained an unusual fatty acid hitherto unreported as the principle component in biodiesel fuels: petroselinic (6Z-octadecenoic; 68.5 wt%) acid. Most of the remaining fatty acid profile consisted of common 18 carbon constituents such as linoleic (9Z,12Z-octadeca-dienoic; 13.0 wt%), oleic (9Z-octadecenoic; 7.6 wt%) and stearic (octadecanoic; 3.1 wt%) acids. A standard transesterification procedure with methanol and sodium methoxide catalyst was used to provide C. sativum oil methyl esters (CSME). Acid-catalyzed pretreatment was necessary beforehand to reduce the acid value of the oil from 2.66 to 0.47 mg g?1. The derived cetane number, kinematic viscosity, and oxidative stability (Rancimat method) of CSME was 53.3, 4.21 mm2 s?1 (40 °C), and 14.6 h (110 °C). The cold filter plugging and pour points were ?15 °C and ?19 °C, respectively. Other properties such as acid value, free and total glycerol content, iodine value, as well as sulfur and phosphorous contents were acceptable according to the biodiesel standards ASTM D6751 and EN 14214. Also reported are lubricity, heat of combustion, and Gardner color, along with a comparison of CSME to soybean oil methyl esters (SME). CSME exhibited higher oxidative stability, superior low temperature properties, and lower iodine value than SME. In summary, CSME has excellent fuel properties as a result of its unique fatty acid composition.  相似文献   

17.
The sequences of development that cut across industrialization, population growth, environmental and economic reasons led individuals and organizations to have direct responsibilities in the development and implementation of sound technologies that will curtail the emissions of hazardous gases and particulate matter. As a result, this study focuses on the optimization and characterization of biodiesel from waste cooking oil. It involves the characterization of the feed stock, the transesterification, the purification of the transesterified waste cooking oil, the optimization of the biodiesel produced using 24 factorial experimental designs, and the characterization of the biodiesel produced from waste cooking oil. Result obtained reveals that operating temperature of 30°C, transesterification time of 60 min, catalyst weight of 0.5%, and alcohol to oil ratio of 6:1 are the optimum conditions with optimum yield of 90% of biodiesel from waste cooking oil. Experimental determinations of some useful properties of the biodiesel produced were carried out for the purpose of confirming the quality as well as the identification of the biofuel. These were moisture content, specific gravity, viscosity, acid value, sulfated ash, cetane number, cloud point, flash point, distillation characteristic, and refractive index. The results obtained were 0.097%, 0.854, 4.90 mm2/s, 0.80 mgKOH/g, 0.01%, 48.00, 53°F, 143°C, 320°C, and 1.412, respectively. The results obtained showed that all the parameters compare favorably with literatures and the standard biodiesel specifications; hence production of biodiesel from waste cooking oil is possible.  相似文献   

18.
Although biodiesel is a sustainable and renewable diesel fuel, the current feedstock predominantly from edible oils limits the economic feasibility of biodiesel production and thus the development of a cost-effective non-food feedstock is really essential. In this study, approximately 21.6% of crude grease was extracted from housefly (Musca domestica L.) larvae reared on swine manure, and the extracted grease was evaluated for biodiesel production concerning the variables affecting the yield of acid-catalyzed production of methyl esters and the properties of the housefly larvae-based biodiesel. The optimized process of 8:1 methanol/grease (mol/mol) with 2 vol% H2SO4 reacted at 70 °C for 2 h resulted in a 95.7% conversion rate from free fatty acid (FFA) into methyl esters. A 90.3% conversion rate of triglycerides (crude grease) to its esters was obtained from alkaline trans-esterification using sodium hydroxide as catalyst. The major fatty acid components of this larvae grease were palmitic (29.1%), oleic (23.3%), palmitoletic (17.4%) and linoleic (17.2%). The housefly larvae-based biodiesel has reached the ASTM D6751-10 standard in density (881 kg/m3), viscosity (5.64 mm2/s), ester content (96.8%), flash point (145 °C), and cetane number (52). These findings suggest that the grease derived from swine manure-grown housefly larvae can be a feasible non-food feedstock for biodiesel production.  相似文献   

19.
In the present work, zeolite based catalyst was prepared from zeolite tuft by impregnation methods. The zeolite tuft was initially treated with hydrochloric acid (16%) and then several KOH/zeolite catalysts were prepared by impregnation in KOH solutions. Various solutions of KOH with different molarities (1–6 M) were used. Further modification for the catalyst was performed by a 2nd step impregnation treatment by heating and stirring the KOH/zeolite to 80 °C for 4 h. The zeolite tuft and the prepared catalysts were characterized by several analytical techniques in order to explore their physicochemical properties. These tests include: X-Ray Fluorescence (XRF), Scanning Electron Microscopy (SEM), Zero point of Charge (PHzpc), Fourier Transform Infrared (FT-IR), Energy-dispersive X-Ray analysis (EDX) and X-Ray Diffraction (XRD). The catalysts were then used for transesterification of waste sunflower vegetable oil in order to produce biodiesel. Among the different catalysts prepared, the 1–4M KOH/TZT catalyst provided the maximum biodiesel yield of 96.7% at 50 °C reaction temperature, methanol to oil molar ratio of 11.5:1, agitation speed of 800 rpm, 335 μm catalyst particle size and 2 h reaction time. The physicochemical properties of the produced biodiesel comply with the EN and ASTM standard specifications.  相似文献   

20.
Brassica juncea is a drought-tolerant member of the Brassicaceae plant family with high oil content and a short growing season that is tolerant of low quality soils. It was investigated as a feedstock for production of biodiesel along with evaluation of subsequent fuel properties, both neat and in blends with petroleum diesel fuel. These results were compared against relevant fuel standards such as ASTM D6751, EN 14214, ASTM D975, EN 590, and ASTM D7467. Crude B. juncea oil was extracted from unconditioned seeds utilizing a continuous tubular radial expeller. The oil was then chemically refined via degumming, neutralization and bleaching to render it amenable to direct homogeneous sodium methoxide-catalyzed transesterification. The principal fatty acid detected in B. juncea oil was erucic acid (44.1%). The resulting biodiesel yielded fuel properties compliant with the biodiesel standards with the exception of oxidative stability and kinematic viscosity in the case of EN 14214. Addition of tert-butylhydroquinone and blending with soybean oil-derived biodiesel ameliorated these deficiencies. The fuel properties of B5 and B20 blends of B. juncea oil methyl esters (BJME) in ultra-low sulfur (<15 ppm S) diesel (ULSD) fuel were within the ranges specified in the petrodiesel standards ASTM D975, EN 590 and ASTM D7467 with the exception of derived cetane number in the case of EN 590. This deficiency was attributed to the inherently low cetane number of the certification-grade ULSD, as it did not contain performance-enhancing additives. In summary, this study reports new fuel property data for BJME along with properties of B5 and B20 blends in ULSD. Such results will be useful for the development of B. juncea as an alternative source of biodiesel fuel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号