首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Hazelnuts, sesame seeds and soybeans were selected as three diverse sources of oil bodies. Application of aqueous extraction and centrifugation steps resulted in concentrated oil body creams that were studied for their physical stability after dilution to a series of 5.0 wt.% oil-in-water emulsions incorporating sodium caseinate (1.0 wt.%), Tween 80 (1.0 wt.%) or xanthan gum (0.1 wt.%). In terms of aggregation/coalescence and creaming, the stability of the oil body based emulsions was ruled to a large extent by the initial natural oil droplet size and the presence of co-extracted exogenous proteins and secondarily by the added biopolymers and the surfactant. More specifically, soybean oil bodies exhibited the highest physical stability, even though incorporation of Tween 80 into all three oil body emulsions improved the stability against aggregation/coalescence, while xanthan gum was an effective stabilizer against creaming.  相似文献   

2.
《Food Hydrocolloids》2006,20(2-3):269-276
The heat stability of emulsions (4 wt% corn oil) formed with whey protein isolate (WPI) or extensively hydrolysed whey protein (WPH) products and containing xanthan gum or guar gum was examined after a retort treatment at 121 °C for 16 min. At neutral pH and low ionic strength, emulsions stabilized with both 0.5 and 4 wt% WPI (intact whey protein) were stable against retorting. The amount of β-lactoglobulin (β-lg) at the droplet surface increased during retorting, especially in the emulsion containing 4 wt% protein, whereas the amount of adsorbed α-lactalbumin (α-la) decreased markedly. Addition of xanthan gum or guar gum caused depletion flocculation of the emulsion droplets, but this flocculation did not lead to their aggregation during heating. In contrast, the droplet size of emulsions formed with WPH increased during heat treatment, indicating that coalescence had occurred. The coalescence during heating was enhanced considerably with increasing concentration of polysaccharide in the emulsions, up to 0.12% and 0.2% for xanthan gum and guar gum, respectively; whey peptides in the WPH emulsions formed weaker and looser, mobile interfacial structures than those formed with intact whey proteins. Consequently, the lack of electrostatic and steric repulsion resulted in the coalescence of flocculated droplets during retort treatment. At higher levels of xanthan gum or guar gum addition, the extent of coalescence decreased gradually, apparently because of the high viscosity of the aqueous phase.  相似文献   

3.
The incorporation of relevant amounts of non-adsorbing hydrocolloids to oil-in-water (O/W) emulsions is a suitable alternative to reduce creaming. The effect of incorporating xanthan gum (XG) or guar gum (GG) in soy soluble polysaccharide (SSPS) stabilized oil-in-water (O/W) emulsions was studied. The emulsions contained 6 wt.% of SSPS, 20 wt.% Perilla seed oil (PSO), an omega-3 vegetable oil, and variable amounts of XG or GG ranging from 0.03 to 0.3 wt.%. The presence of minute amounts of XG or GG in fresh emulsions significantly decreased the emulsion droplet size (EDS) although such low concentrations did not provide enough continuous phase viscosity to arrest creaming. Emulsion microstructure indicated the presence of flocculation even at high concentrations of XG or GG caused by a depletion mechanism. All emulsions with XG or GG exhibited pseudoplastic behavior while the control emulsions showed an almost Newtonian behavior. Emulsion droplet polydispersion generally decreased with increase in the continuous phase viscosity indicating the importance of continuous phase viscosity in the dissipation of shear energy throughout the emulsion during homogenization. The characteristics of the emulsions were closely related to the rheological changes of the continuous phase.  相似文献   

4.
Food emulsions exhibit a great diversity of rheological characteristics; hydrocolloids are usually added to deal with creaming instability. Viscoelastic measurements provide information about the microstructure of the system. The objectives of this work were: a) to determine the viscoelastic behavior of two different low in fat oil-in-water food emulsions: a gel like and a fluid type emulsions stabilized with hydrocolloids (gellan gum and xanthan-guar mixtures respectively) b) to model and predict the mechanical relaxation spectrum for both emulsions and continuous aqueous phases. Low-in-fat oil-in-water emulsions (20 g/100 g) were prepared using sunflower oil and Tween 80 (1 wt.%). Fluid emulsions containing xanthan and guar gums were formulated using a synergistic ratio 7:3, with total hydrocolloid concentration ranging between 0.5 to 2 wt%. The aqueous phases contained NaCl (2 wt.%) and acetic acid (2 wt.%). The effect of hydrocolloids was studied using oscillatory measurements (G’ and G” vs. frequency) within the linear viscoelastic range previously determined by stress-sweeps. Time-Concentration Superposition principle was applied to find the master curves that describe the mechanical spectra of the viscoelastic materials. Superposition allows to obtain a wide spectrum of nearly ten decades of frequencies in emulsions containing xanthan–guar mixtures, whereas gellan gum systems did not show a significant frequency displacement. Viscoelastic behavior of the systems was satisfactorily modeled using Baumgaertel-Schausberger-Winter (BSW) equation. This empirical model was used to predict the mechanical relaxation spectrum for both emulsions and continuous aqueous phases. Validation of the predicted spectra was carried out through creep compliance data for emulsion-filled gels and steady-state flow curves for emulsions containing xanthan–guar mixtures.  相似文献   

5.
The influence of two anionic dietary fibers (xanthan gum and pectin) on the oxidative stability and lipid digestibility of fish oil emulsions stabilized by wheat protein (gliadin) was investigated. Lipid oxidation was determined by measuring lipid hydroperoxides and TBARS of the emulsions during storage, while protein oxidation was measured using fluorescence spectroscopy. Lipid and protein oxidation was faster at pH 3.5 than at pH 7, which may have been due to increased iron solubility under acidic conditions. Xanthan gum inhibited lipid and protein oxidation, which was attributed to its ability to bind iron ions. Conversely, pectin promoted oxidation, which was attributed to the presence of endogenous transition metals in the polysaccharide ingredient. In vitro digestion was carried out to evaluate the digestibility of oil droplets in emulsions with or without polysaccharides. Both xanthan gum and pectin significantly increased the rate of lipid digestion, which was attributed to their ability to inhibit droplet aggregation under gastrointestinal conditions. These results have important implications for designing emulsion-based functional foods with improved oxidative stability and lipid digestibility.  相似文献   

6.
The effect of Ultra-High Pressure Homogenization (UHPH, 100–300 MPa) on the physicochemical properties of oil-in-water emulsions prepared with 4.0% (w/v) of soy protein isolate (SPI) and soybean oil (10 and 20%, v/v) was studied and compared to emulsions treated by conventional homogenization (CH, 15 MPa). CH emulsions were prepared with non-heated and heated (95 °C for 15 min) SPI dispersions. Emulsions were characterized by particle size determination with laser diffraction, rheological properties using a rotational rheometer by applying measurements of flow curve and by transmission electron microscopy. The variation on particle size and creaming was assessed by Turbiscan® analysis, and visual observation of the emulsions was also carried out. UHPH emulsions showed much smaller d3.2 values and greater physical stability than CH emulsions. The thermal treatment of SPI prior CH process did not improve physical stability properties. In addition, emulsions containing 20% of oil exhibited greater physical stability compared to emulsions containing 10% of oil. Particularly, UHPH emulsions treated at 100 and 200 MPa with 20% of oil were the most stable due to low particle size values (d3.2 and Span), greater viscosity and partial protein denaturation. These results address the physical stability improvement of protein isolate-stabilized emulsions by using the emerging UHPH technology.  相似文献   

7.
In this study the effect of Lepidium perfoliatum seed gum on the properties of whey protein concentrate (WPC) stabilized corn oil-in-water emulsions at pH 7 was investigated. Various concentrations (0–0.6% w/v) of L. perfoliatum seed gum were used together with 2% (w/v) WPC to emulsify corn oil in water at a ratio of 1:5. Quality attributed such as particle size distribution, creaming profile and coalescence rate during storage at 4 and 25 °C; surface and interfacial tension; zeta potential and viscosity of the emulsions were determined. The results indicated that the addition of L. perfoliatum seed gum had no significant effect on zeta potential but the surface and interfacial tension increased with the rise of gum concentration. It was also found that the addition of L. perfoliatum seed gum to WPC emulsions at a critical concentration of 0.2% (w/v) caused flocculation of oil droplets, which resulted in marked increase in particle size and the creaming rate. However at higher gum concentrations beyond this value, the particle size remained constant, apparently because of the high viscosity of the aqueous phase. At all concentrations tested, emulsions stored at 4 °C were more stable except for those containing 0.2% L. perfoliatum seed gum.  相似文献   

8.
The influence of calcium ions and chelating agents on the thermal stability of model nutritional beverages was examined. Oil-in-water emulsions (6.94% (w/v) soybean oil, 0.35% (w/v) WPI, 0.02% (w/v) sodium azide, 20 mM Tris buffer, 0–10 mM CaCl2, and 0–40 mM EDTA or citrate, pH 7.0) were stored at temperatures between 30 and 120 °C for 15 min. The particle size, particle charge, creaming stability, rheology, and free-calcium concentration of the emulsions were then measured. In the absence of chelating agents, appreciable droplet aggregation occurred in emulsions held at temperatures from 80 to 120 °C, which led to increased emulsion particle diameter, shear-thinning behavior, apparent viscosity, and creaming instability. Addition of chelating agents to the emulsions prior to heating decreased, but did not prevent, droplet aggregation in the emulsions. EDTA was more effective than citrate in decreasing droplet aggregation. Heat treatment increased the amount of chelating agents required to prevent droplet aggregation in the emulsions. Free-calcium concentration and droplet surface potential was independent of heat-treatment temperature, indicating that the performance of the chelating agents in binding calcium ions was not affected by the heat treatment. It was suggested that increased hydrophobic attractive interactions between the droplets occurred during heating, which induced droplet aggregation.  相似文献   

9.
An oscillating capillary rheometer was used to investigate the dynamic viscoelastic and intrinsic viscosity properties of deacetylated xanthan (0.025%), native xanthan (0.025%), guar gum (0.075%), and xanthan–guar mixtures in dilute solutions. Influence of ionic strength on xanthan conformation and interaction with guar gum was elaborated. As the salt concentration increased, a significant (P < 0.05) decrease in viscosity (η′) and elasticity (η″) values was observed for both native xanthan–guar mixtures and deacetylated xanthan–guar mixtures. In water and 2 mM NaCl solution, the relative viscosity and η″ of both native xanthan–guar mixtures and deacetylated xanthan–guar mixtures were much higher than of those calculated for mixtures assuming no interaction, whereas no pronounced increase was found for polysaccharide mixtures in 40 mM NaCl. The intrinsic viscosities of deacetylated xanthan–guar mixtures in water and 2 mM NaCl were higher, whereas the intrinsic viscosities of native xanthan–guar mixtures were lower than those calculated from the weight averages of the two individually, assuming no interaction. These results demonstrated that intermolecular interaction has occurred between xanthan and guar mixtures in water and 2 mM NaCl, but may not occur in 40 mM NaCl, and mutual incompatibility may occur. The results suggest that the degree of disordering of xanthan played a critical role in xanthan–guar interaction and may explain the differences in η′, η″, and intrinsic viscosity measurements between 2 and 40 mM NaCl.  相似文献   

10.
Minced-ostrich meat was blended and chopped with various proportions of gum powder in terms of carboxymethyl cellulose (CMC), locust bean gum (LBG) and xanthan gum (XAN) and other ingredients such as sodium chloride, sodium tripolyphosphate, linseed oil and ice. The mixed batters were then pressurized at 600 MPa and 50 °C for 40 min. Subsequently, their viscoelastic and physicochemical properties were assessed in terms of their dynamic oscillatory moduli, their resultant creep behavior, water-holding capacity and electrophoretic profiles. The results showed that the addition of individual gums and composite gum mixtures influenced both viscoelastic behavior and water-holding capacity of resulting pressurized ostrich-meat emulsions. The most elastic system (greatest G′ or smallest J0 with 4.21 × 10 5 1/Pa) was the meat emulsion with 1% LBG added, while the least were those formed by adding 1% XAN or 0.5% XAN plus 0.5% CMC (J0 with 10 × 10 5 and 20.3 × 10 5 1/Pa, respectively). Subsequent electrophoritic profiles and the measurement of the water-holding capacity of the materials suggested an evidence of ionic interaction between the basic ostrich-meat protein matrix and XAN or XAN plus CMC.Industrial relevanceOstrich meat emulsions containing composite gums were set by combined pressure and temperature. Subsequently, the pressurized gels were characterized by dynamic oscillatory, creep and other physicochemical measurements. In particular, the viscoelastic measuring system is a promising tool for ensuring quality of food biopolymers. Therefore, this methodology is relevant in the area of controlling quality or developing new products where difficulty exists in solubilising the samples.  相似文献   

11.
Emulsifying properties of commercial canola protein isolate (CPI)–hydrocolloid-stabilized emulsions were evaluated under varied conditions (CPI, salt and hydrocolloid concentrations; pH, denaturants). Emulsifying activity index (EAI) and emulsion stability (ES) were determined by turbidimetric testing. The results showed that under complexing conditions (at pH 6), the addition of 1% (w/v) κ-carrageenan (κ-CAR) increased the EAI of CPI-stabilized emulsions from 162 to 201 m2/g and ES from 68% to 95%. Under conditions promoting incompatibility (at pH 10), the use of 1% (w/v) guar gum increased the EAI of CPI-stabilized emulsions from 68 to 177 m2/g and ES from 66% to 100%. The lower EAI and ES values observed in CPI–hydrocolloid-stabilized emulsions treated with sodium salts and denaturants support the involvement of hydrophobic interactions, hydrogen bonds and disulfide linkages in the emulsification of these systems. Interfacial properties of CPI–hydrocolloid mixtures were improved by electrostatic complexing and incompatibility, making these systems suitable for stabilizing food emulsions.  相似文献   

12.
The experiments evaluated the influence of fish oil quality and cold storage temperature on the oxidative stability of milk emulsions containing 1.0% w/w milk fat and 0.5% w/w of either a pure fish oil or a fish oil:rapeseed oil mixture. The results showed that it was possible to produce a pasteurised milk product enriched with the important n-3 PUFA from fish oil with acceptable sensory characteristics if (1) the emulsions were based on a mixture of fish oil and rapeseed oil and (2) the initial peroxide value (PV) of the added oil blend was below 0.5 meq kg−1. The sensory analysis showed a clear distinction between emulsions based on oil with PV 0.1 and 0.5 meq kg−1, whereas the PV and the gas chromatographic (GC) analysis of volatile oxidation products were not sensitive enough to reveal these differences clearly. The GC analyses showed that the onset of formation of the volatiles was earlier with increased storage temperature in the range of 2–9 °C.  相似文献   

13.
The properties of o/w emulsions stabilized with 1%w/v common bean (Phaseolus vulgaris L.), V or scarlet runner bean (P. coccineus L.), Coc extracted by isoelectric precipitation or ultrafiltration, at pH 7.0 and 5.5, with the addition of Arabic gum, locust bean gum, xanthan gum and a mixture of xanthan gum–locust bean gum (0.1 %w/v and 0.25 %w/v) are studied. The stability of emulsions was evaluated on the basis of oil droplet size, creaming, viscosity and protein adsorption measurements. The addition of Arabic gum, caused an increase in D[4,3] values and a decrease in the amount of protein adsorbed at the interface. The addition of locust bean gum in some emulsions reduced the amount of protein adsorbed. The addition of xanthan and to a less extend of the polysaccharide mixture, promoted a decrease in D[4,3]. So, emulsion stability was affected by the polysaccharide nature. Differences were also observed with respect to the protein nature, the method of its preparation and emulsion's pH. All polysaccharides enhanced the emulsions viscosity with xanthan and xanthan–locust bean gum exhibiting the higher values. V isolates and isoelectricaly precipitated isolates of both V, Coc showed higher viscosity values. The stability was enhanced by the increase of the viscosity of the continuous phase and the creation of a network, which prevents the oil droplets from coalescence.  相似文献   

14.
The retrogradation behavior of waxy maize starch pastes with added xanthan gum was investigated. The pastes were prepared with or without added xanthan gum at two starch concentrations (5:100 and 7:100), at two temperatures within the gelatinization range (70 °C or 72 °C) and at acid or neutral pH. The evolution of the macrostructure (texture, flow behavior and syneresis), microstructure (oscillation rheology) and molecular aggregation (pulsed-field NMR) of the pastes was followed up in an 8 week period during cold storage (7 °C). Heating temperature was found to have a profound effect on the long-term stability of the pastes. Pastes prepared at 70 °C behaved as flocculated dispersions of largely intact, swollen granules which resulted in stable structural properties during the preservation period. At 72 °C, a higher degree of gelatinization and degradation was observed, resulting in structurally unstable systems due to association and crystallization of amylopectin. Especially for these systems, xanthan gum was found to enhance the gelation process, probably due to phase separation. Although xanthan gum may restrict the granule disruption during preparation, this beneficial effect on the freshly prepared pastes did not result in an improved stability during storage.  相似文献   

15.
《Food chemistry》1998,61(4):467-474
Partially dehulled sunflower seeds were subjected to a hydrolytic treatment with cellulases during aqueous processing for oil and protein extraction. Sub-optimal extraction conditions (particle size and separation technology) were established in order to appreciate the potential improvement caused by the enzymatic treatment and to select the best operational conditions. The effects of three operational variables (extraction–treatment time, water/seeds ratio and enzyme/seed ratio) were studied on three objective functions (the extent of hydrolysis reaction, the oil extraction yield and the percent polyphenolics removal). After 2 h of enzymatic treatment–extraction a practical optimum in the range 7.5–8 g water g−1 seeds and 1.25–1.4 g enzyme 100 g−1 seeds could be defined. Under these conditions the oil extractability and the polyphenolics removal are improved by more than 30 and 80%, respectively.  相似文献   

16.
The objective of the present study was to investigate flocculation in layer-by-layer (LBL) emulsion systems with high total solids content and deflocculation at various pH conditions, and the effects of whey protein isolate (WPI) concentration and total solids content on the stability of LBL emulsions. WPI (1.96% (1WPI) or 10.71% (10WPI), w/w in water) was prepared in water and high-pressure homogenized with sunflower oil (10%, w/w, of total emulsion). Gum Arabic (0.15%, w/w, in total emulsion) was added to assemble electrostatically on WPI at oil particle interfaces at pH 3.5 using aqueous citric acid (10% w/w) forming LBL emulsion. The ζ-potential measurements showed charge reversal upon addition of gum Arabic solution into single layer (SL) emulsion confirming the formation of LBL interface. Trehalose:maltodextrin mixture (1:1, w/w, total emulsion, 28.57% (28) or 57.14% (57), w/w, in water) was used in the continuous phase. The high total solids content of the system results in depletion flocculation of the particles leading to bridging flocculation without coalescence as deflocculation into individual particles occurred with increasing pH from pH 3.5 to pH 6.5 in 10WPI systems. Deflocculation was evident in 10WPI-28 and 10WPI-57 as found from a decreased ζ-average diameter and visually under microscope. Coalescence was observed in 1WPI systems. Viscosity of the systems was significantly (P < 0.05) increased with higher total solids content. Accelerated destabilization test showed that systems at higher WPI and total solids contents exhibited the highest stability against creaming. Deflocculation in LBL systems can be controlled by pH while high solids in the aqueous phase provide stability against creaming.  相似文献   

17.
Biodegradable edible films have the potential to either replace or reduce the amount of synthetic packaging utilized by the food industry. The overall goal of this research was to investigate the effect of flax seed oil concentration (1–10%) on the mechanical, moisture barrier and swelling properties of soy protein isolate (SPI) (5.0% w/w SPI, 40% w/w glycerol) emulsion-based films. Film forming solutions showed a bimodal oil droplet distribution with peak sizes occurring at < 10 and ~ 100 μm. As the oil content increased, the size distribution shifted towards smaller droplet sizes. An equal size ratio was noted at the 5.0% oil content level. All film forming solutions were pseudoplastic in nature, where viscosity increased from 18 to 58 mPa (at 1 s 1) as a function of oil content (3% to 10%). Tensile strength of formed films reached a maximum at 5.35 MPa at the 5% w/w oil level, whereas tensile elongation increased from 11.3% to 22.2% with increasing oil content. Puncture strength and deformation, as well as water vapour permeability was relatively independent of the oil content. Moisture content and swelling properties of formed films were found to both decrease from 22.8% to 18.7%, and from 3114% to 1209%, respectively as the oil content was raised from 1 to 10%, and films became darker, redder and more yellow in colour as the percentage of flax seed oil increased.  相似文献   

18.
This paper brings forward the encapsulation of annatto seed oil (rich in geranylgeraniol) assisted by high intensity ultrasound using gum Arabic (GA) as stabilizing agent. We studied the effects of time (min) and ultrasonication power (W) over the emulsion characteristics. After forming microparticles from the best emulsion using freeze-drying (FD) and spray-drying (SD) techniques, we evaluated particle size distribution, moisture, water activity, surface oil, entrapment efficiency, encapsulation efficiency, geranylgeraniol retention, oxidative stability and kinetic release of geranylgeraniol, a biocompound with functional activities. The combined intensification of time and ultrasonication power reduced the superficial mean diameter (D32) and polydispersity (PDI) of emulsions. Drying the continuous phase of the optimized emulsion (smallest D32 = 0.69 ± 0.03 μm) using FD and SD formed microparticles with different morphological characteristics, Brouckere diameter (D43), particle size distribution, moisture and water activity. SD process led to microparticles with the highest oil encapsulation efficiency (85.1 ± 0.1 wt.%) as a consequence of their lowest surface oil (SO). However, GA-FD microparticles presented the highest oil entrapment efficiency (97 ± 1 wt.%). Geranylgeraniol retention (80–86 wt.%) was similar for both drying techniques. GA-FD microparticles were more stable against oxidation through accelerated test Rancimat, even though presenting higher SO. This behavior is associated with the likely phase transition on the GA-SD matrix. The difference on the kinetic release of geranylgeraniol is linked to the difference on the particles morphology and particle size distribution.  相似文献   

19.
The effects of addition of polysaccharides with different ionic charge on rheology, microstructure, texture and water holding capacity (WHC) of acid milk gels were studied and compared to that of gelatin addition. Similar to gelatin, starch (neutral) and xanthan gum (anionic) did not prevent milk gelation in the first 30 min of the acidification stage, even at high concentrations, and the typical casein network in acid milk gels could still be seen from electron micrographs; gelling and melting of these hydrocolloids were observed during the cooling and heating stages at specific concentrations. On the other hand, two neutral polysaccharides, guar gum (≥ 0.05%) and locust bean gum [LBG] (≥ 0.1%) inhibited milk gelation from the beginning of the acidification stage; the microstructure of the gel was modified greatly and no gelling/melting was observed during the cooling or heating stages. Another anionic polysaccharide, carrageenan, induced earlier milk gelation at low concentration (≤ 0.05%), but inhibited gelation entirely at high concentration (0.2%); inflections at ~ 27 °C and 21 °C were also observed during the cooling and heating stages at 0.05% concentration. The gel microstructure was not changed greatly, but showed smaller particle size at a carrageenan concentration of 0.05% than control sample. None of the polysaccharides showed as much improvement in WHC of the milk gels as gelatin did. Hence, xanthan and starch were found to be closer to gelatin in their effect on acid milk gels compared to guar gum, LBG and carrageenan.  相似文献   

20.
Trilepisium madagascariense (TM) and Antiaris africana (AA) are two underutilized plants from Nigeria. They have been subjected to standard analytical techniques in order to evaluate the proximate composition, physico-chemical properties, mineral nutrient, fatty acid composition and distribution in the lipid classes of the seeds and seed oils. The carbohydrate composition of these seeds are high; TM is 62.73 ± 0.30% and AA is 53.97 ± 0.50%. Iodine value of TM was found to be 46.10 ± 0.70 mg iodine/g while that of AA was 88.24 ± 0.50 mg iodine/g. The mineral composition of the seeds and the oils varied with K having the highest concentration in the seed and Na the highest concentration in the oils. Linoleic acid is the dominant fatty acid in the oil of AA with the highest composition in the neutral lipids while palmitic acid is the dominant fatty acid in oil of TM. Vitamin E, Gamma-Sitosterol, α and β-Amyrin, Lupeol, Stigmast-4-en-3-one, and hydrocarbons were isolated from these oils. The results of the proximate, mineral nutrient compositions, chemical characterization and fatty acid distribution of these seeds and seed oils shows their possibility as potential resources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号