首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In wave motion, the water particles are known to follow orbital paths. This orbital motion was studied and a five bladed Savonius rotor was built to extract energy from the orbiting particles. Experiments were performed on a rotor placed parallel to the incoming waves in a two-dimensional wave channel by varying the frequency of the wave generator, which produced sinusoidal waves. The rotor submergence below the mean level was varied. The flow around the rotor was studied with particle image velocimetry (PIV) measurements. It was found that the rpm of the rotor (Nn) increases with an increase in wave frequency. An increase in wave height also increases the Nn values, as the kinetic energy of the particles' orbital motion increases. The optimum Nn values are obtained when the rotor is placed close to the water surface at the minimum submergence of 1.06d where ‘d’ is the rotor diameter.  相似文献   

2.
The method of wave energy conversion utilises an oscillating water column (OWC). The OWC converts wave energy into low-pressure pneumatic energy in the form of bi-directional airflow. Wells turbine with its zero blade pitch setting has been used to convert this pneumatic power into uni-directional mechanical shaft power. Measurements in OWC based wave energy plants in India and Japan show that the airflow velocity is not equal in both directions. The velocity is more when the airflows out to the atmosphere (exhalation) than in the reverse direction. It may be advantageous to set the rotor blade pitch asymmetrically at a positive pitch so as to achieve a higher mean efficiency in a wave cycle. Towards this objective, performance characteristics of a turbine with different blade setting angles in steady flow were found by experimentation. Quasi-steady analysis was then used to predict the mean efficiency for a certain variation of air velocity with time. This variation with time was taken as pseudo-sinusoidal wherein the positive part of the cycle was taken as a half sine-wave whose amplitude is greater than that of the negative half sine-wave. Such a variation is representative of what happens in reality. For exhalation velocity amplitude to inhalation velocity ratios 0.8 and 0.6, a rotor blade setting angle of 2° was found to be optimum.  相似文献   

3.
以输出功率100W的阻力型垂直轴型风力机为例,通过优化设计找寻最佳的叶片数目、高径比和折叠率等几何参量,然后加入导风帘装置,给出一个最佳结构方案。运用Fluent求解器中的有限体积法对无导风帘和三种不同长度导风帘设计的叶片周围的流场进行模拟。模拟与最佳优化方式的性能参数的计算结果表明,采用长导风帘设计的阻力型垂直轴风力机具有最好的动力学性能,可以提高运行效率。  相似文献   

4.
S. Sivasegaram 《Energy》1978,3(1):23-30
The resistance-type, direction-independent wind turbine is suitable for the generation of power on a small scale in developing countries. So far, all work on this class of wind turbine seems to be restricted to the Savonius rotor. The present paper reports the findings of an experimental investigation of an entire class of wind turbines which includes the conventional Savonius rotor. The influence of four rotor-geometry parameters (i.e. number of blades, blade angle, blade location and angle of setting of the blade) is studied and discussed on the basis of two performance criteria (i.e. turbine efficiency and performance on the basis of blade area). The existence of optimum, design parameters is established and the possibility of improving substantially on the performance of the Savonius rotor is demonstrated. Some possible applications of the present class of turbines are briefly commented on.  相似文献   

5.
This paper presents the work carried out to predict the behavior of a 0.6 m impulse turbine with fixed guide vanes with 0.6 hub to tip (H/T) ratio under real sea conditions.This enhances the earlier work done by authors on the subject by including the effects of damping applied by the turbine. Real wave data for different wave sites were used as the input data. A typical oscillating water column (OWC) geometry has been used for this simulation. Standard numerical techniques were employed to solve the non-linear behavior of the sea waves. Considering the quasi-steady assumption, uni-directional steady flow experimental data were used to simulate the turbine characteristics under irregular unsteady flow conditions. The test rotor used for this simulation consisted of 30 blades with elliptical profile with a set of symmetric, fixed guide vanes on both up-stream and down-stream sections of the rotor, with 26 vanes each. The results show that the performance of this type of turbine depends on the level of damping applied by the turbine and the prevailing wave site conditions. The objective of this paper is to predict the effects of applied damping on the behavior of impulse turbine under irregular, unsteady conditions for wave power conversion using numerical simulation.  相似文献   

6.
S型风力机气动设计   总被引:1,自引:0,他引:1  
概述S型风力机的工作原理以及优缺点。系统分析了影响S型风轮气动性能的外形参数,总结出S型风力机达到最优气动性能时的外形参数。以最优外形参数为基础设计完成额定功率为300W的S型风力机的气动外形,所得结果可以同类型风力机的设计提供理论指导。  相似文献   

7.
A 3-D mathematical model of regular wave flume is conducted to investigate the heaving performance of a cylindrical floater. The results show that the transverse velocities near the floater distribute symmetrically at the wave crest and trough times, its symmetry axis is the longitudinal straight line across the floater center, and 4 extreme regions distribute near the floater. With the increase of relative width of wave flume, the trapped wave energy and the relative response amplitude increase firstly. Then, they decreases and appear to be stable for the relative width of wave flume higher than 10. The trapped wave energy and the relative response amplitude increase with the increase of incident wave height, respectively. With the increase of wave period, the trapped wave energy decreases, however, the relative response amplitude increases.  相似文献   

8.
Savonius型风力机结构的优化设计   总被引:1,自引:0,他引:1  
对传统Savonius型垂直轴风力机各几何参量进行优化,在此基础上加入一种半自动阀门装置,得到的新型Savonius风力机,在设计风速10m/s下,对其各项空气动力学性能参数进行计算。结果表明,这种风力机具有很好的开发意义,可应用于沿海地区民宅的小型风力发电,城市公共照明及景区夜景工程的离网供电。  相似文献   

9.
An electrical approach to wave energy conversion   总被引:2,自引:0,他引:2  
Motions in nature, for example ocean waves, can play a significant role in tomorrow's electricity production, but the constructions require adaptations to its media. Engineers planning hydropower plants have always taken natural conditions, such as fall height, speed of flow, and geometry, as basic design parameters and constraints in the design. The present paper describes a novel approach for electric power conversion of the vast ocean wave energy. The suggested linear electric energy converter is adapted to the natural wave motion using straightforward technology. Extensive simulations of the wave energy concept are presented, along with results from the experimental setup of a multisided permanent magnet linear generator. The prototype is designed through systematic electromagnetic field calculations. The experimental results are used for the verification of measurements in the design process of future full-scale direct wave energy converters. The present paper, describes the energy conversion concept from a system perspective, and also discusses the economical and some environmental considerations for the project.  相似文献   

10.
This paper investigates wave energy conversion in open water where the goal is to utilize the wave-field focusing effect of a stationary disc submerged a short depth beneath the water surface. Dynamic interaction of the disc with additional coupled, submerged inertias is used to minimize its oscillation. The method used to enable and extend this favorable dynamic coupling is discussed here. An oscillating water column in a submerged duct attached under a small circular opening in the disc and driven by the wave-field over the disc is used for wave energy conversion. Non-real-time reactive control of the water column response to enhance energy absorption is examined. Added mass, radiation damping, and exciting force values for the submerged disc are computed, and the focusing effect of a submerged stationary disc is confirmed with numerical calculations of surface elevation over the disc. Calculations of hydrodynamic performance suggest that energy absorption from the oscillating water column is significantly greater under control holding the disc stationary, and can be improved further by applying reactive loads tuned to the optimal susceptance and conductance associated with the oscillating water column. Although the control forces involved in holding the disc stationary may be large at lower wave numbers, the maximum deflection amplitudes of the compensation system are found to be within reasonable limits.  相似文献   

11.
This paper presents a review on the performance of Savonius wind turbines. This type of turbine is unusual and its application for obtaining useful energy from air stream is an alternative to the use of conventional wind turbines. Simple construction, high start up and full operation moment, wind acceptance from any direction, low noise and angular velocity in operation, reducing wear on moving parts, are some advantages of using this type of machine. Over the years, numerous adaptations for this device were proposed. The variety of possible configurations of the rotor is another advantage in using such machine. Each different arrangement of Savonius rotor affects its performance. Savonius rotor performance is affected by operational conditions, geometric and air flow parameters. The range of reported values for maximum averaged power coefficient includes values around 0.05–0.30 for most settings. Performance gains of up to 50% for tip speed ratio of maximum averaged power coefficient are also reported with the use of stators. Present article aims to gather relevant information about Savonius turbines, bringing a discussion about their performance. It is intended to provide useful knowledge for future studies.  相似文献   

12.
In this paper the feasibility of wave energy exploitation off the Italian coasts is investigated. At this aim, the energy production and the performance characteristics of three of the most promising and documented wave energy converters (AquaBuOY, Pelamis and Wave Dragon) are estimated for two of the most energetic Italian locations. The sites are Alghero, on the western coast of Sardinia and Mazara del Vallo, on the Sicily Strait and they have respectively an average annual wave power of 10.3 kW/m and 4 kW/m, and an available annual wave energy of 90 MWh/m and 35 MWh/m.The energy production of the hypothetical wave farms is calculated based on the performance matrices of the wave energy converters (WECs) and on 21 years of wave buoy records, covering the period from 1990 to 2011. The estimated capacity factors are low (between 4% and 9%) compared to the ones obtained for the same wave energy converters in other locations and are affected by a strong seasonal variability. This indicates that the considered WECs are oversized with respect to the local wave climate and that a more efficient energy conversion would be obtained if they were downscaled according to the typical wave height and period of the study sites. As a consequence of the optimization of the device scale, at Alghero the deployment of 1:2.5 AquaBuOY, Pelamis or Wave Dragon devices would result in capacity factors around 20% and in a quite constant energy production throughout the year. In fact, the size reduction of the wave energy converters allows to capture the energy of the small waves which would otherwise be lost with the original WECs.The results of the present work suggest that deploying classic wave energy converters in Italian seas would not be cost effective but if the devices could accommodate a proper downscaling, their performance in energy conversion would become economically attractive also for some Italian locations.  相似文献   

13.
Ocean wave energy is one of the world's most powerful forms of energy and the energy density in ocean waves is the highest among renewable energy sources. Wave energy converters are employed to harness this energy and convert it into usable electrical energy. However, in order to efficiently extract the energy, the wave energy converter must be optimised in the design stage. Therefore, in this paper, a methodology is presented which aims to optimise the structural geometric configuration of the device to maximise the average power extraction from its intended deployment site. Furthermore, a case study of the Atlantic marine energy test site, off the west coast of Ireland, is undertaken in order to demonstrate the methodology. Using the average annual wave energy spectrum at this site as the input, the optimum structural geometric configuration was established, along with an analysis of the optimum configuration for different radius devices. In addition, the optimum damping coefficient of the PTO mechanism is determined and the total mean absorbed power for the structure at the site over the entire scatter diagram of data is calculated.  相似文献   

14.
In this study increasing the performance of Conventional Savonius wind rotor has been investigated by a 3D (three dimensional) printer which is one of the rapid prototyping techniques. For this purpose, some design changes have been introduced to increase the performance of conventional Savonius wind rotor. Here, 3D digital designing of Savonius wind rotors have been easily manufactured tangible as a physical model by a 3D printer. Experimental data concerning produced Savonius wind rotors have been acquired by using a wind tunnel. Some numerical data have been obtained from the CFD (Computational Fluid Dynamics) analysis carried out under the same conditions. The effects of the additional blade end design have been examined to obtain more torque increase on improved classical Savonius wind rotor. Furthermore, by means of introducing straight blade, the effects of the flow compression inside the blade have been reduced and rotor performance increased. Based on such optimizations, optimum additional design parameters have been designated as that (1/r) ratio is 0.3, (s/r) is 1, and (α) additional straight blade angle is 135°. It has been determined that power coefficient is increased at a ratio of around 20% together with all these design changes.  相似文献   

15.
何方  唐晓  潘佳鹏  赵嘉俊 《太阳能学报》2022,43(12):469-475
将波能装置与防波堤等海洋结构物相结合,将有助于提升其经济性,促进其应用。以一定间距平行排布多个圆筒振荡水柱装置(OWC)形成波能利用型圆筒透空堤,并基于二维波浪水槽物理模型实验对其水动力特性展开研究,重点关注筒间距、OWC吃水、波高对于波浪防护和波能转换的影响规律。结果表明:圆筒较为紧密排布时,高效波能转换的波频范围显著拓宽;较浅OWC吃水在获得近似波浪防护效果的同时波能转换性能更佳;波浪防护效果及波能转换性能受波高影响较小。波能利用型圆筒透空堤在实际应用时,应采用较小的筒间距和OWC吃水,以同时兼顾较好的波浪防护效果和波能转换性能。  相似文献   

16.
One of the main challenges that our society must overcome in this century is that of finding alternative energy sources to fossil fuels. These, ideally, must be inexpensive, less polluting than current fuels and available for a substantial time. One promising alternative is hydrogen, which has the great advantage that it can be produced by coupling renewable energy devices with water electrolysis. Several projects devoted to connecting photovoltaic and wind systems with electrolysis devices have been successful; however, little research has been done into the coupling of ocean wave energy converters with water electrolysis. The work here proposes a basic system that stores the energy from waves in the form of hydrogen. The WEC considered is a novel design known as a Blow-Jet, which captures waves and converts them into a water jet. The performance of the Blow-Jet is found to depend more on wavelength than on wave height. The electrolyser results show, at 0.200 A and 1.88 V, that the electrolysis of water produces 0.082 Nl h−1 of hydrogen and a current efficiency (ηI) of 90.58%.  相似文献   

17.
The amount of energy produced now by the world community and that of energy flows caused by natural phenomena demonstrates commensurability of both power sources. Power production based on the conventional technologies is accompanied by environmental pollution, greenhouse and overheating effects resulting in biosphere degradation. It is apparent that the most intelligent solution of the problem of power production growth is the development of environmentally compatible power system using the regional renewable power resources. A system consisting of sea wave energy converter and electrolytic installation for hydrogen production is under consideration in this article.A potential candidate for wave energy conversion is an offshore Float Wave Electric Power Station (FWEPS), which is in the development stage. The second component of the system is the hydrogen producing facilities based on sea water electrolysis. Hydrogen as an ecologically safe fuel can be used in different branches of economy. The tentative studies showed that direct sea water electrolysis is technically feasible and is a perspective procedure for an environmentally-clean commercial production of hydrogen and associate products.Real performance of the system components allow to treat it as realizable.  相似文献   

18.
This paper presents the comparison of a three-dimensional Computational Fluid Dynamics (CFD) analysis with empirical performance data of a 0.6 m Impulse Turbine with Fixed Guide Vanes used for wave energy power conversion. Pro-Engineer, Gambit and Fluent 6 were used to create a 3-D model of the turbine. A hybrid meshing scheme was used with hexahedral cells in the near blade region and tetrahedral and pyramid cells in the rest of the domain. The turbine has a hub-to-tip ratio of 0.6 and results were obtained over a wide range of flow coefficients. Satisfactory agreement was obtained with experimental results. The model yielded a maximum efficiency of approximately 54% as compared to a maximum efficiency of around 49% from experiment. A degree of insight into flow behaviour, not possible with experiment, was obtained. Sizeable areas of separation on the pressure side of the rotor blade were identified toward the tip. The aim of the work is to benchmark the CFD results with experimental data and to investigate the performance of the turbine using CFD and to with a view to integrating CFD into the design process.  相似文献   

19.
Savonius rotor is simple in design and easy to fabricate at a lower cost. The basic driving force of Savonius rotor is drag. The drag coefficient of a concave surface is more than the convex surface. Hence, the advancing blade with concave side facing the water flow would experience more drag force than the returning blade, thus forcing the rotor to rotate. Net driving force can be increased by reducing the reverse force on the returning blade. This can be realized by providing flow obstacle to the returning blade. The objective of the present work is to find out the optimal position of the deflector plate upstream to the flow which would result in maximum power generated by the rotor. Experimental investigations are carried out to study the influence of the location of the deflector plate on the performance of a modified Savonius rotor with water as the working medium at a Reynolds number of 1.32 × 105. Eight different positions of the deflector plate are attempted in this study. Results conclude that deflector plate placed at its optimal position increases the coefficient of power by 50%. Maximum coefficient of power is found to be 0.21 at a tip speed ratio of 0.82 in the presence of deflector plate. Two stage and three stage modified Savonius rotors are tested to study the influence of deflector plate at the optimal position. Maximum coefficient of power improves by 42%, 31% and 17% with deflector plate for two stage 0° phase shift, 90° phase shift and three stage modified Savonius rotor respectively.  相似文献   

20.
Conventional Savonius rotors have high coefficient of static torque at certain rotor angles and a negative coefficient of static torque from 135° to 165° and from 315° to 345° in one cycle of 360°. In order to decrease this variation in static torque from 0° to 360°, a helical Savonius rotor with a twist of 90° is proposed. In this study, tests on helical Savonius rotors are conducted in an open jet wind tunnel. Coefficient of static torque, coefficient of torque and coefficient of power for each helical Savonius rotor are measured. The performance of helical rotor with shaft between the end plates and helical rotor without shaft between the end plates at different overlap ratios namely 0.0, 0.1 and 0.16 is compared. Helical Savonius rotor without shaft is also compared with the performance of the conventional Savonius rotor. The results indicate that all the helical Savonius rotors have positive coefficient of static torque at all the rotor angles. The helical rotors with shaft have lower coefficient of power than the helical rotors without shaft. Helical rotor without shaft at an overlap ratio of 0.0 and an aspect ratio of 0.88 is found to have almost the same coefficient of power when compared with the conventional Savonius rotor. Correlation for coefficient of torque and power is developed for helical Savonius rotor for a range of Reynolds numbers studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号