首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Biohydrogen production from dairy wastewater with subsequent biogas purification by hollow fiber membrane module was investigated in this study. The purified and not purified (raw) biohydrogen were used as fuel in polymer electrolyte membrane (PEM) fuel cell. Furthermore, the effect of CO2 on the performance of PEM fuel cell was evaluated considering cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and polarization curves. The maximum H2 production rate was 0.015 mmol H2/mol glucose and the biohydrogen concentration in biogas was ranged 33%–60% (v/v). CO2/H2 selectivity decreased with increasing pressure and maximum selectivity was obtained as 4.4 at feed pressure of 1.5 bar. The electrochemical active surface (EASA) areas were decreased with increasing CO2 ratio. The maximum power densities were 0.2, 0.08 and 0.045 W cm−2 for 100%, 80% and 60% (v/v) H2, respectively. The results indicated that integrated PEM fuel cell/biogas purification system can be used as a potential clean energy sources during acidogenic biohydrogen production from dairy wastewater.  相似文献   

2.
Biogas conversion to syngas (mainly H2 and CO) is considered an upgrade method that yields a fuel with a higher energy density. Studies on syngas production were conducted on an inert porous media reactor under a filtration combustion mode of biogas with steam addition, as a non-catalytic method for biogas valorization. The reactor was operated under a constant filtration velocity of 34.4 cm/s, equivalence ratio of 2.0, and biogas concentration of 60 vol% Natural Gas/40 vol% CO2, while the steam to carbon ratio (S/C) was varied between 0.0 and 2.0. Total volumetric flow remained constant at 7 L/min. Combustion wave temperature and propagation rate, product gas composition, reactants conversion as well as H2 and CO selectivity were measured as a function of S/C ratio. Chromatographic parameters, method validation and measurement uncertainty were developed and optimized. It was observed that S/C ratio of 2.0 gave optimal results under studied conditions for biogas conversion, leading to maximum concentrations of 10.34 vol% H2, 9.98 vol% CO and highest thermal efficiency of 64.2% associated with a modified EROI of 46.3%, which considered energy consumption for steam supply. Conclusions indicated that the increment of the steam co-fed with the reactants favored the non-catalytic conversion of biogas and thus resulted in an effective fuel upgrading.  相似文献   

3.
This paper presents an experimental study on the application of gas hydrate technology to biogas upgrading. Since CH4, CO2 and H2S form hydrates at quite different thermodynamic conditions, the capture of CO2 and H2S by means of gas hydrate crystallization appears to be a viable technological alternative for their removal from biogas streams. Nevertheless, hydrate-based biogas upgrading has been poorly investigated. Works found in literature are mainly at a laboratory scale and concern with thermodynamic and kinetic fundamental studies. The experimental campaign was carried out with an up-scaled apparatus, in which hydrates are produced in a rapid manner, with hydrate formation times of few minutes. Two types of mixtures were used: a CH4/CO2 mixture and a CH4/CO2/H2S mixture. The objective of the investigation is to evaluate the selectivity and the separation efficiency of the process and the role of hydrogen sulphide in the hydrate equilibrium. Results show that H2S can be captured along with CO2 in the same process. The maximum value of the separation factor, defined as the ratio between the number of moles of CO2 and the number of moles of CH4 removed from the gas phase, is 11. In the gas phase, a reduction of CO2 of 24.5% in volume is achievable in 30 min.Energy costs of a real 30-min separation process, carried out in the experimental campaign, are evaluated and compared with those obtained from theoretical calculations. Some aspects for technology improvement are discussed.  相似文献   

4.
Biogas generated from anaerobic digestion can be employed as fuel in either industrial boilers or electric generators. The presence of a trace amount of hydrogen sulfide (H2S) in the biogas can severely impact on the biogas applications. Biotrickling filter (BF) inoculated with a pure strain of sulfide oxidizing bacterium, Paracoccus pantotrophus NTV02 was used to remove H2S from the biogas in the present work. P. pantotrophus was successfully immobilized on plastic packing media in BF after 228 h inoculation. H2S containing biogas and liquid media was subsequently fed into BF under countercurrent direction with fixed inlet gas flowrate and liquid media recirculation rate at 0.5 LPM (120 s EBRT) and 3.6 L/h. H2S in the biogas was varied in the range of 100–2,000 ppmv. BF achieved H2S removal efficiency at 98.3–99.7% at its inlet concentration ranges of 300–1,500 ppmv of H2S. The removal efficiency (99.5%) little declined as H2S inlet reached 2,000 ppmv. The maximum of elimination capacity was 82.98 g H2S/m3·h at the loading rate of 83.58 g H2S/m3·h.  相似文献   

5.
Biogas from anaerobic digestion of biological wastes is a renewable energy resource. It has been used to provide heat, shaft power and electricity. Typical biogas contains 50–65% methane (CH4), 30–45% carbon dioxide (CO2), moisture and traces of hydrogen sulphide (H2S). Presence of CO2 and H2S in biogas affects engine performance adversely. Reducing CO2 and H2S content will significantly improve quality of biogas. In this work, a method for biogas scrubbing and CH4 enrichment is presented. Chemical absorption of CO2 and H2S by aqueous solutions in a packed column was experimentally investigated. The aqueous solutions employed were sodium hydroxide (NaOH), calcium hydroxide (Ca(OH)2) and mono-ethanolamine (MEA). Liquid solvents were circulated through the column, contacting the biogas in countercurrent flow. Absorption characteristics were examined. Test results revealed that the aqueous solutions used were effective in reacting with CO2 in biogas (over 90% removal efficiency), creating CH4 enriched fuel. H2S was removed to below the detection limit. Absorption capability was transient in nature. Saturation was reached in about 50 min for Ca(OH)2, and 100 min for NaOH and MEA, respectively. With regular replacement or regeneration of used solutions, upgraded biogas can be maintained. This technique proved to be promising in upgrading biogas quality.  相似文献   

6.
Hydrogen sulfide (H2S), a highly corrosive gas, is found in biogas due to the biodegradation of proteins and other sulfur containing organic compounds present in feed stock during anaerobic digestion. The presence of H2S is one of the biggest factors limiting the use of biogas. It should be removed prior to application of biogas in an electric generator or industrial boiler. The present research evaluated the performance of biotrickling filter inoculated with Halothiobacillus neapolitanus NTV01 (HTN) on the H2S removal from synthetic biogas. HTN, isolated and purified from activated sludge, is a sulfur oxidizing bacteria able to degrade H2S and thiosulfate to elemental sulfur and sulfate, respectively. Operational parameters in a short term operation were varied as following; gas flow rate (0.5–0.75 LPM); EBRT (40–120 s); the inlet H2S concentrations (0–1500 ppmv); liquid recirculation rate (3.6–4.8 L/h). EBRT showed a greater effect to the removal efficiency than increasing H2S concentration. Longer EBRT resulted higher removal efficiency. The changes of liquid recirculation rates did not significantly affect the removal efficiency. In long term operation, the gas flow rate and liquid recirculation rate were fixed at 0.5 LPM (120 s EBRT) and 3.6 L/h; and H2S concentrations were varied (0–2040 ppmv). The maximum elimination capacity was found as 78.57 g H2S/m3 h, which had greater performance than the previous studies.  相似文献   

7.
The separation of methane from raw biogas was the main purpose of this study. A polymer membrane was used in order to obtain the high energy product, which can be utilized in cogeneration systems (CHP) or as a natural gas substitute. The study showed that using a polyimide hollow fiber module for biogas purification was an efficient method (low energy consumption, small-sized devise and a simple separation module). The satisfying results of laboratory tests caused scale up the installation. Different synthetic gas mixtures were used at the lab-scale, while in the field tests, raw biogas from a Polish two-stage agricultural biogas plant was processed. The plant used the following substrates: maize silage, grass silage and blends of these substrates with different supplements. The concentration of methane in the raw gas was up to 70% volume and contained up to 250 ppm of H2S. In both cases (laboratory and field tests), the retentate after membrane treatment was characterized by high methane concentration (up to 90% volume) and was free of H2S. The applied membrane demonstrated high selectivity for separating CH4 from CO2, H2S and H2O. The permeate stream contained less than 5% volume of CH4, which ensured low losses of the desired biogas component. The influence of pressure (below 10 bars) and stage cut on the quality of the product were analyzed to develop optimal process conditions for mobile plant construction.  相似文献   

8.
The production of hydrogen from hydrogen compounds for fuel cell or internal combustion engine applications is a potential method for responding to the energy crisis and environmental problems. In this work carbon dioxide reforming of methane and decomposition of ammonia using a Laval nozzle arc discharge (LNAD) reactor has been exploited at atmospheric pressure without external heating or catalysts. CH4 (or NH3) conversion and H2 selectivity were observed to be negatively correlated with the concentration of CH4 (or NH3) and the flux of CO2 (N2) and positively correlated with voltage and the Laval nozzle throat radius. Power consumption increased with the concentration of methane at the same CO2 flow rate, and the conversion of methane gradually increased with the content of water vapor in the gas mixture. A high conversion rate and fair H2 selectivity were achieved, 51% and 37.5%, respectively, when the methane and carbon dioxide flow rates were 4 L/min and 14 L/min, respectively, and the minimum distance between the two electrodes was 2.5 mm. The LNAD reactor used in this study exhibited a good conversion rate and low energy consumption, which should be suitable for the industrial scale-up of the system.  相似文献   

9.
Effect of gas sparging on continuous fermentative hydrogen production   总被引:5,自引:1,他引:4  
The effect of gas sparging on continuous fermentative H2 production was investigated in completely stirred-tank reactors (CSTR) using internal biogas, N2 and CO2 with various flow rates (100, 200, 300 and 400 ml/min). The sparging with external gases of N2 and CO2 showed higher H2 yield than the control of no sparging and internal biogas sparging. It indicated that the decrease of H2 partial pressure by external gas sparging had a beneficial effect on H2 fermentation. Especially, CO2 sparging was more effective in the reactor performance than N2 sparging, accompanied by higher production of H2 and butyrate. The best performance was obtained by CO2 sparging at 300 ml/min, resulting in the highest H2 yield of hexoseconsumed and the maximum specific H2 production rate of 6.89 L H2/g VSS/day. Compared to N2 sparging, there might be another positive effect in CO2 sparging apart from lowering H2 partial pressure. High CO2 partial pressure had little effect on H2-producing bacteria but inhibitory effect on other microorganisms such as acetogens and lactic acid bacteria which were competitive with H2-producing bacteria. Only H2-producng bacteria, such as Clostridium tyrobutyricum, C. proteolyticum and C. acidisoli were isolated under CO2 sparging conditions based on 16S rDNA analysis by PCR-DGGE.  相似文献   

10.
Applicability of gulfweed as feedstock for a biomass-to-liquid (BTL) process was studied for both production of gas with high syngas (CO + H2) content via gasification of gulfweed and removal of gaseous impurities using char obtained in the gasification. Gulfweed as aqueous biomass was gasified with He/CO2/O2 using a downdraft fixed-bed gasifier at ambient pressure and 900 °C at equivalence ratios (ER) of 0.1–0.3. The syngas content increased while the conversion to gas on a carbon basis decreased with decreasing ER. At an ER of 0.1 and He/CO2/O2 = 0/85/15%, the syngas content was maximized at 67.6% and conversion to gas on a carbon basis was 94.2%. The behavior of the desulfurization using char obtained during the gasification process at ER = 0.1 and He/CO2/O2 = 0/85/15% was investigated using a downdraft fixed-bed reactor at 250–550 °C under 3 atmospheres (H2S/N2, COS/N2, and a mixture of gases composed of CO, CO2, H2, N2, CH4, H2S, COS, and steam). The char had a higher COS removal capacity at 350 °C than commercial activated carbon because (Ca,Mg)S crystals were formed during desulfurization. The char simultaneously removed H2S and COS from the mixture of gases at 450 °C more efficiently than did activated carbon. These results support this novel BTL process consisting of gasification of gulfweed with CO2/O2 and dry gas cleaning using self-supplied bed material.  相似文献   

11.
To produce high-concentration syngas (CO + H2) from biogas, the effect of pressurization on dry reforming of biogas (CH4/CO2 = 60%/40%) in kilohertz spark-discharge plasma was reported for the first time by elevating the pressure from 1 bar to 2 bar. It was found that elevating the pressure could not only increase the reactant conversions, but also reduce energy cost and increase fuel-production efficiency at the same specific energy input (SEI). In particular, pressurization exhibited a significantly positive effect on increasing CO2 conversion and decreasing energy cost for converting CO2. Syngas concentration as high as 83% (H2/CO = 1.4) was achieved with a ratio of the flow rates of product gas (dry basis) to feeding gas, 1.7, at 2 bar and SEI = 753 kJ/mol. The by-product, H2O, was produced with only about 5% of hydrogen-based selectivity in this work. At 2 bar, the effect of SEI was investigated by varying the power and flow rate, respectively. Compared with those at 1 bar, with the increase in SEI, reactants conversion increased fast, energy cost rose slowly and fuel-production efficiency decreased slowly at 2 bar.  相似文献   

12.
Biogas produced during anaerobic decomposition of plant and animal wastes consists of high concentrations of methane (CH4), carbon dioxide (CO2) and traces of hydrogen sulfide (H2S). The primary focus of this research was on investigating the effect of a major impurity (i.e., H2S) on a commercial methane reforming catalyst during hydrogen production. The effect of temperature on CH4 and CO2 conversions was studied at three temperatures (650, 750 and 850 °C) during catalytic biogas reforming. The experimental CH4 and CO2 conversions thus obtained were found to follow a trend similar to the simulated conversions predicted using ASPEN plus. The gas compositions at thermodynamic equilibrium were estimated as a function of temperature to understand the intermediate reactions taking place during biogas dry reforming. The exit gas concentrations as a function of temperature during catalytic reforming also followed a trend similar to that predicted by the model. Finally, catalytic reforming experiments were carried out using three different H2S concentrations (0.5, 1.0 and 1.5 mol%). The study found that even with the introduction of small amount of H2S (0.5 mol%), the CH4 and CO2 conversions dropped to about 20% each as compared to 65% and 85%, respectively in the absence of H2S.  相似文献   

13.
The aim of this study is to maintain and increase the activity of the catalyst in the presence of H2S with the addition of iron to the Ni catalyst. Alumina-supported monometallic iron and bimetallic nickel-iron catalysts with different weight percentages (8% Fe, 3% Ni – 3% Fe and 8% Ni – 8% Fe) were synthesized using the wet impregnation method in this study. Alumina was prepared by the sol-gel method. The activities of these synthesized catalysts in the methane dry reforming reaction were investigated at different H2S concentrations (0 ppm, 2 ppm, and 50 ppm) with a total flow rate of 60 mL/min containing an equimolar ratio of CH4, CO2, and Ar at 750 °C and atmospheric pressure. To investigate the effect of sulfur compounds on the catalytic activity, the catalysts were also exposed to different gas compositions such as the mixture of H2S + He, H2S + CO2 + He, and H2S + CO2 + CH4 + He. In this case, FT-IR with a gas cell was used to determine the components in the gas stream at the reactor outlet. To explain catalytic performance, characterization studies were carried out using XRD, N2 adsorption/desorption, DRIFT, SEM, TGA, and XPS analysis. All-synthesized materials showed Type-IV isotherm with a hysteresis loop corresponding to an ordered mesoporous structure. The DRIFT analysis showed a decrease in the Lewis acid sites after the addition of iron into the Ni-catalysts. In the activity test carried out in the presence of 50 ppm H2S, it was observed that the iron-containing 8Ni–8Fe@SGA catalyst increased the sulfur resistance slightly, compared to the monometallic 8Ni@SGA catalyst. TGA analysis showed that Fe addition reduced coke deposition, as the Ni–Fe catalyst had a lower nickel crystal size than the Ni-based catalyst. FTIR analysis with a gas cell showed that sulfur in H2S transformed to other sulfur compounds such as COS and/or SO2 during dry reforming of biogas over alumina-supported Ni–Fe catalysts.  相似文献   

14.
Biogas utilization in MCFC systems requires a high level of gas purification in order to meet the stringent sulfur tolerance limits of both the fuel cells and the reformer catalysts. In this study, two commercial activated carbons (ACs) have been tested for H2S removal from the biogas produced at the Montescarpino Municipal Solid Waste landfill in Genoa, Italy. The performed analyses show a low selectivity of activated carbon towards the adsorption of only sulfur species. This represents a drawback for the use of this type of system, however, the use of mixed beds of different ACs has demonstrated to be advantageous in improving the removal efficiency of H2S. Thus, the adsorption treatments with AC can ensure the high level of gas desulfurization required for fuel cell application. Nevertheless, the low adsorption capacity observed using landfill biogas would lead to high operative costs that suggest the application of a preliminary gas-scrubbing stage.  相似文献   

15.
Hythane is a mixture of hydrogen and methane gases which are generally produced in separate ways. This work studied mesophilic biohythane gas (H2+CH4+CO2) production in a bioreactor via single-stage dark fermentation. The fermentation was conducted in batch mode using mixed anaerobic microflora and food waste and condensed molasses fermentation soluble to elucidate the effects of food to microorganisms (F/M) ratio (ranging from 0.2 to 38.2) on gas production, metabolite variation, kinetics and biohythane-composition indicator performances. The experimental results indicate that the F/M ratio and fermentation time affect biohythane production efficiency with values of peak maximum hydrogen production rate 9.60 L/L-d, maximum methane production rate 0.72 L/L-d, and hydrogen yield (HY) of 6.17 mol H2/kg CODadded. Depending on the F/M ratios, the H2, CH4 and CO2 biogas components were 10–60%, 5–20% and 35–70%, respectively. Prospects for the further real application for single-stage biohythane fermentation based on the experimental data are proposed. This work characterizes an important reactor operation factor F/M ratio for innovative single-stage dark fermentation.  相似文献   

16.
A two-step, un-coupled process producing hydrogen (H2) from wheat straw using Caldicellulosiruptor saccharolyticus in a ‘Continuously stirred tank reactor’ (CSTR) followed by anaerobic digestion of its effluent to produce methane (CH4) was investigated. C. saccharolyticus was able to convert wheat straw hydrolysate to hydrogen at maximum production rate of approximately 5.2 L H2/L/Day. The organic compounds in the effluent collected from the CSTR were successfully converted to CH4 through anaerobic digestion performed in an ‘Up-flow anaerobic sludge bioreactor’ (UASB) reactor at a maximum production rate of 2.6 L CH4/L/day. The maximum energy output of the process (10.9 kJ/g of straw) was about 57% of the total energy, and 67% of the energy contributed by the sugar fraction, contained in the wheat straw. Sparging the hydrogenogenic CSTR with the flue gas of the UASB reactor ((60% v/v) CH4 and (40% v/v) CO2) decreased the H2 production rate by 44%, which was due to the significant presence of CO2. The presence of CH4 alone, like N2, was indifferent to growth and H2 production by C. saccharolyticus. Hence, sparging with upgraded CH4 would guarantee successful hydrogen production from lignocellulosic biomass prior to anaerobic digestion and thus, reasonably high conversion efficiency can be achieved.  相似文献   

17.
We introduced a novel combined process of CO2 methanation (METH) and catalytic decomposition of methane (CDM) for simultaneous production of hydrogen (H2) and carbon nanotubes (CNTs) from biogas. In this process, biogas is catalytically upgraded into CH4-rich gas in METH reactor using Ni/CeO2 catalyst, and the obtained CH4-rich gas is subsequently decomposed into H2 and CNTs in CDM reactor over CoMo/MgO catalyst. Among the three different process scenarios proposed, the combined process with a steam condenser equipped between METH and CDM reactors could greatly improve a CNTs productivity. The CNTs production yield increased by more than 2.5-fold, maximizing at 9.08 gCNTs/gCat with a CNTs purity of 90%. The deposited carbon product was characterized as multi-walled carbon nanotubes (MWCNTs) with a surface area of 136.0 m2/g, comparable with commercial CNTs of 199.8 m2/g. The remarkable IG/ID ratio of 2.18 confirms a superior portion of graphitic carbon in the synthesized CNTs upon the commercial CNTs with IG/ID = 0.74. Notably, the CH4 conversion reached 94.5%, while the CO2 conversion achieved 100%, resulting in the H2 yield and H2 purity higher than 90%. This combined process demonstrates a promising route for production of high quality CNTs and high purity H2 with complete CO2 conversion using biogas as abundant renewable energy resources. In addition, the test of raw biogas showed no deactivation of catalyst, justifying the implementation of the developed process for real biogas without purification.  相似文献   

18.
Aqueous-phase reforming (APR) of sorghum hydrolyzate was performed in a fixed bed reactor applying response surface methodology (RSM) based on the Box–Behnken design (BBD) to produce hydrogen gas. The results showed that RSM based on the BBD was a well-matched method for optimizing of APR of sorghum hydrolyzate. The independent variables such as interactive effects of temperature, feed flow rate, and carbon content of sorghum hydrolyzate on the APR were investigated. The mathematical model and experimental results showed that the operation temperature was the main positive linear effect whereas the interaction between temperature and feed flow rate was the main negative linear effect on the hydrogen yield. The highest hydrogen production was found to be a temperature of 270 °C, a hydrolyzate flow rate of 0.30 mL/min, and a carbon content of biomass concentration of 2500 mg/L. The highest H2/CO2 mole ratio (7.9) obtained at 270 °C when carbon content of sorghum hydrolyzate was 1000 mg/L.  相似文献   

19.
Biogas is a renewable biofuel that contains a lot of CH4 and CO2. Biogas can be used to produce heat and electric power while reducing CH4, one of greenhouse gas emissions. As a result, it has been getting increasing academic attention. There are some application ways of biogas; biogas can produce hydrogen to feed a fuel cell by reforming process. Urea is also a hydrogen carrier and could produce hydrogen by steam reforming. This study then employes steam reforming of biogas and compares hydrogen-rich syngas production and carbon dioxide with various methane concentrations using steam and aqueous urea solution (AUS) by Thermodynamic analysis. The results show that the utilization of AUS as a replacement for steam enriches the production of H2 and CO and has a slight CO2 rise compared with pure biogas steam reforming at a temperature higher than 800 °C. However, CO2 formation is less than the initial CO2 in biogas. At the reaction temperature of 700 °C, carbon formation does not occur in the reforming process for steam/biogas ratios higher than 2. These conditions led to the highest H2, CO production, and reforming efficiency (about 125%). The results can be used as operation data for systems that combine biogas reforming and applied to solid oxide fuel cell (SOFC), which usually operates between 700 °C to 900 °C to generate electric power in the future.  相似文献   

20.
A Ni–Co bimetallic catalyst, Ni–Co/La2O3/Al2O3, was prepared by conventional incipient wetness impregnation. It shows a high level of activity and excellent stability for biogas reforming. This work examines how operating conditions, such as the reaction temperature, operating pressure, feed ratio, gas hourly space velocity (GHSV), and CO2 excessive coefficient, affect the catalytic performances of the catalyst. The experimental biogas is simulated with CH4 and CO2 at a molar ratio of 1, without any dilute gas. The catalyst was also characterized by XRD, BET, TEM and TG-DSC. In a stability test of 510 h under the conditions of 800 °C, 1 atm, and a GHSV of 6000 ml gcat−1 h−1, the average coking rate over the catalyst was only about 0.0374 mg gcat−1 h−1. The experimental results also indicate that the dynamic equilibrium between the deposition and gasification of carbon deposited on the surface of the catalyst can be established during the reaction. The aggregation of metallic Ni/Co and the formation of filamentous carbon over the surface of the catalyst can be inhibited effectively. During the last 50 h of the 510 h stability test, the average conversion of CH4 and CO2, the selectivity to H2 and CO, and ratio of H2/CO were 95.2%, 96.7%, 95.0%, 98.3%, and 0.96, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号