首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper gives a novel hybrid optimization method to find optimal sitting and operation of an autonomous MG at the same time. The operation is optimized via finding the optimal droop gain parameters of DGs. The optimization problem is formulated as a multi-objective problem where the objectives are applied to minimize the fuel consumption of DGs and to improve the voltage profile and stability of MG subject to operational and security constraints. A hybrid algorithm, named HS-GA, is developed to solve the paper optimization problem. A new formulation of power flow is derived to run the proposed algorithm where the steady state frequency of system, reference frequency, reference voltage and droop coefficients of DGs, based on a droop controller, are considered as optimization variables. The performance of the paper approach is compared with other optimization and non-optimization methods in MG with 33and 69 buses using MATLAB. The performance of the proposed method is compared with a method that the parameters of DGs are pre-determined without conducting any optimization process. The results show, which optimized droop parameters improves the operation of the MG.  相似文献   

2.
A mobile renewable house using PV/wind/fuel cell hybrid power system   总被引:1,自引:0,他引:1  
A photovoltaic/wind/fuel cell hybrid power system for stand-alone applications is proposed and demonstrated with a mobile house. This concept shows that different renewable sources can be used simultaneously to power off-grid applications. The presented mobile house can produce sufficient power to cover the peak load. Photovoltaic and wind energy are used as primary sources and a fuel cell as backup power for the system. The power budgeting of the system is designed based on the local data of solar radiation and wind availability. Further research will focus on the development of the data acquisition system and the implementation of automatic controls for power management.  相似文献   

3.
We present the results of an analysis of the performance of a photovoltaic array that complement the power output of a wind turbine generator in a stand-alone renewable energy system based on hydrogen production for long-term energy storage. The procedure for estimating hourly solar radiation, for a clear sunny day, from the daily average solar insolation is also given. The photovoltaic array power output and its effective contribution to the load as well as to the energy storage have been determined by using the solar radiation usability concept. The excess and deficit of electrical energy produced from the renewable energy sources, with respect to the load, govern the effective energy management of the system and dictate the operation of an electrolyser and a fuel cell generator. This performance analysis is necessary to determine the effective contribution from the photovoltaic array and the wind turbine generator and their contribution to the load as well as for energy storage.  相似文献   

4.
This paper presents a methodology to minimize the total cost of buying power from different energy producers including renewable energy generations particularly within the context of a microgrid. The proposed idea is primarily based on the controlled operation of a battery energy storage system (BESS) in the presence of practical system constraints coupled with our proposed cost optimization algorithm. The complex optimization problem with constraints has been solved using the well-known concept of dynamic programming. The methodology has been assessed using actual power and price data from six different power generation sites and cost reduction has been calculated for a number of BESSs by varying their energy and power capacities. Twofold benefits of the proposed methodology lie in minimizing the total cost along with the constraint-based efficient operation of the BESS. Simulation results depict that the given power demand at a particular region can be fulfilled properly at all times using a BESS and multiple power generation.  相似文献   

5.
Utilizing renewable energy resources is one of the convenient ways to reduce greenhouse gas emissions. However, the intermittent nature of these resources has led to stochastic characteristics in the generation and load balancing of the microgrid systems. To handle these issues, an energy management optimization for microgrids operation should be done to urge the minimization of total system costs, emissions, and fuel consumption. An optimization program for decreasing the operational cost of a hybrid microgrid consisting of photovoltaic array, wind unit, electrolyzer, hydrogen storage system, reformer, and fuel cell is presented. Two different methods of producing hydrogen are considered in this study to ensure the effectiveness of the developed methodology. In the microgrid system with high penetration of renewable energy resources, using storage technologies to compensate for the intermittency of these resources is necessary. To evaluate the functioning of the microgrid system, a mathematical model for each source is developed to coordinate the system operation involving energy conversion between hydrogen and electricity. Particle Swarm Optimization Algorithm is utilized to determine the optimum size and operational energy management within the system. It is evident from the results that there is about a 10% reduction in the amount of CH4 consumption in reformer when the electrolyzer was employed in the system. It is observed that the CH4 reduction in summer and fall is higher than other seasons (10.6% and 11.5%, respectively). The reason is that the highest RES production occurs in these seasons during a year. It is also worth mentioning that the electrolyzer technology would play a significant role in decreasing the CH4 consumption in the microgrid system.  相似文献   

6.
Renewable energy integration into existing or new energy hubs together with Green technologies such as Power to Gas and Green Hydrogen has become essential because of the aim of keeping the average global temperature rise within 2 °C with regard to the Paris Agreement. Hence, all energy markets are expected to face substantial transitions worldwide. On the other hand, investigation of renewable energy systems integrated with green chemical conversion, and in particular combination of green hydrogen and synthetic methanation, is still a scarce subject in the literature in terms of optimal and simultaneous design and operation for integrated energy grids under weather intermittency and demand uncertainty. In fact, the integration of such promising new technologies has been studied mainly in the operational phase, without considering design and management simultaneously. Thus, in this work, a multi-period mixed-integer linear programming (MILP) model is formulated to deal with the aforementioned challenges. Under current carbon dioxide limitations dictated by the Paris Agreement, this model computes the best configuration of the renewable and non-renewable-based generators, their optimal rated powers, capacities and scheduling sequences from a large candidate pool containing thirty-nine different equipment simultaneously. Moreover, the effect of the intermittent nature of renewable resources is analyzed comprehensively under three different scenarios for a specific location. Accordingly, a practical scenario generation method is proposed in this work. It is observed that photovoltaic, oil co-generator, reciprocating ICE, micro turbine, and bio-gasifier are the equipment that is commonly chosen under the three different scenarios. Results also show that concepts such as green hydrogen and power-to-gas are currently not preferable for the investigated location. On the other hand, analysis shows that if the emission limits are getting tightened, it is expected that constructing renewable resource-based grids will be economically more feasible.  相似文献   

7.
Lately, interest in renewable sources, especially wind and solar energy, has shown a significant increase in all over the world that mostly depends on climate-threatening conventional fossil fuels. Besides, hybrid use of these power sources with suitable back-up units provides many advantages compared to sole use of these sources. In this regard, a hybrid system consisting of a wind turbine for utilizing the wind energy, photovoltaic panels for solar energy, fuel cell for providing back-up power and a battery unit for storing the possible excess energy production and supplying the transient load is considered in this study. Experimental assessment of this system in different case studies including the real time measured dynamic power demand of an office block is realized. The collaborative actions of the proposed hybrid system with a fuzzy logic based energy management strategy during fluctuations of renewable-based power production are investigated. Thus, results of this study may be valuable for evaluating the feasibility of stand-alone hybrid renewable energy units for future power systems.  相似文献   

8.
The Optimal Renewable Energy Model (OREM) has been developed to determine the optimum level of renewable energy sources utilisation in India for the year 2020–21. The model aims at minimising costefficiency ratio and determines the optimum allocation of different renewable energy sources for various end-uses. The extent of social acceptance level, potential limit, demand and reliability will decide the renewable energy distribution pattern and are hence used as constraints in the model. In this paper, the performance and reliability of wind energy system and its effects on OREM model has been analysed. The demonstration windfarm (4 MW) which is situated in Muppandal, a village in the southern part of India, has been selected for the study. The windfarm has 20 wind turbine machines of 200 KW capacity. The average technical availability, real availability and capacity factor have been analysed from 1991 to 1995 and they are found to be 94.1%, 76.4% and 25.5% respectively. The reliability factor of wind energy system is found to be 0.5 at 10,000 hours. The OREM model is analysed considering the above said factors for wind energy system, solar energy system and biomass energy systems. The model selects wind energy for pumping end-use to an extent of 0.3153×1015 KJ.  相似文献   

9.
In the present study, a method is proposed to solve the problem of economic load distribution in MGs, meet the challenges arising from the use of renewable sources periodically, ensure the stable performance of MGs, and minimize the operating cost of MGs considering combined heat and power (CHP) units and reserve system. Moreover, demand-side management (DSM) as a tool is employed to reduce the operating cost of the power system. Therefore, the proposed model for optimal operation of MGs using DSM is formulated as an optimization problem. Load shifting is considered as an effective solution in DSM. Minimizing the total operating cost of the system is considered as the objective function of this problem. Problem constraints include operating and executive constraints for load shifting. Finally, the model is solved using the developed adolescent identity search algorithm (AISA). In the developed model, Powell's local search operator is employed to improve the efficiency of searching for the optimal solution. Due to the existing uncertainties in load consumption and day-ahead market price, the method is presented as a scenario-based stochastic energy management problem. The results reveal the proposed method is highly efficient in solving the problem, and load management can improve economic indicators.  相似文献   

10.
For the development of the energy infrastructure of remote isolated consumers, an expedient solution is the creation of a modular hybrid energy system based on renewable energy sources, which will save tens of billions of rubles a year by saving expensive diesel fuel. Taking into account the high wind energy resource in these territories, the use of wind power plants as part of that system is justified. The article discusses the methodology for substantiating the parameters and modes of operation of an autonomous wind-diesel power complex based on the territorial-power classification of power supply systems and a 4-level methodology for optimizing parameters, an example of upgrading an existing diesel power plant in the Arkhangelsk region is given. The existing diesel units with a capacity of 1300 kW were replaced by a modular wind-diesel power system with a high renewable penetration level (58%) with four wind turbines with a capacity of 200 kW and a storage system with a capacity of 65 kWh. This made it possible to achieve a diesel fuel replacement share of 232 000 L per year, which in monetary terms in 2021 prices is 25 million rubles per year. As a promising direction, a variant of the territorial development of the energy sector of the Leshukonsky district of the Arkhangelsk region based on wind energy with the possibility of producing up to 100 tons of “green” hydrogen annually is considered. Various options for reducing harmful emissions in the region were considered, the maximum use of local resources allows saving up to 22 000 tons of CO2e per year.  相似文献   

11.
Electrical energy is one of the key components for the development and sustainability of any nation. India is a developing country and blessed with a huge amount of renewable energy resources still there are various remote areas where the grid supply is rarely available. As electrical energy is the basic requirement, therefore it must be taken up on priority to exploit the available renewable energy resources integrated with storage devices like fuel cells and batteries for power generation and help the planners in providing the energy-efficient and alternative solution. This solution will not only meet electricity demand but also helps reduce greenhouse gas emissions as a result the efficient, sustainable and eco-friendly solution can be achieved which would contribute a lot to the smart grid environment. In this paper, a modified grey wolf optimizer approach is utilized to develop a hybrid microgrid based on available renewable energy resources considering modern power grid interactions. The proposed approach would be able to provide a robust and efficient microgrid that utilizes solar photovoltaic technology and wind energy conversion system. This approach integrates renewable resources with the meta-heuristic optimization algorithm for optimal dispatch of energy in grid-connected hybrid microgrid system. The proposed approach is mainly aimed to provide the optimal sizing of renewable energy-based microgrids based on the load profile according to time of use. To validate the proposed approach, a comparative study is also conducted through a case study and shows a significant savings of 30.88% and 49.99% of the rolling cost in comparison with fuzzy logic and mixed integer linear programming-based energy management system respectively.  相似文献   

12.
High penetration of wind generation in electrical microgrids causes fluctuations of tie-line power flow and significantly affects the power system operation. This can lead to severe problems, such as system frequency oscillations, and/or violations of power lines capability. With proper control, a distribution static synchronous compensator (DSTATCOM) integrated with superconducting magnetic energy storage (SMES) is able to significantly enhance the dynamic security of the power system. This paper proposes the use of a SMES system in combination with a DSTATCOM as effective distributed energy storage (DES) for stabilization and control of the tie-line power flow of microgrids incorporating wind generation. A new detailed model of the integrated DSTATCOM-SMES device is derived and a novel three-level control scheme is designed. The dynamic performance of the proposed control schemes is fully validated using MATLAB/Simulink.  相似文献   

13.
Climate change concerns due to the rising amounts of the carbon gas in the atmosphere have in the last decade or so initiated a fast pace of technological advances in the renewable energy industry. Such developments in technology and the move towards cleaner sources of energy have made distributed generation (DG) from renewable resources more desirable. However, it is a known fact that rising penetrations of DG can have adverse impacts on the grid structure and its operation. The microgrid concept is a solution proposed to control the impact of DG and make conventional grids more suitable for large scale deployments of DG. Covering many aspects of the power systems and power electronics fields, microgrids have become a very popular research field. This paper reviews the background and the concept of a microgrid, the current status of the literature, on-going research projects, and the relevant standards. It also presents a review of the microgrid pilot projects around the world in further detail and discusses the potential avenues for further research.  相似文献   

14.
The key advantage of renewables is that they are free of direct pollution and carbon emissions. Given concern over global warming caused by carbon emissions, there are substantial policy efforts to increase renewable penetrations. The purpose of this paper is to outline and evaluate the challenges presented by increasing penetrations of renewable electricity generation. These generation sources primarily include solar and wind which are growing rapidly and are new enough to the grid that the impact of high penetrations is not fully understood. The intrinsic nature of solar and wind power is very likely to present greater system challenges than “conventional” sources. Within limits, those challenges can be overcome, but at a cost. Later sections of the paper will draw on a variety of sources to identify a range of such costs, at least as they are foreseen by researchers helping prepare ambitious plans for grids to obtain high shares (30–50%) of their megawatt hours from primarily solar and wind generation. Energy poverty issues are outlined and related to renewable costs issues.  相似文献   

15.
Several recent studies have proposed fast transitions to energy systems based on renewable energy technology. Many of them dismiss potential physical constraints and issues with natural resource supply, and do not consider the growth rates of the individual technologies needed or how the energy systems are to be sustained over longer time frames. A case study is presented modelling potential growth rates of the wind energy required to reach installed capacities proposed in other studies, taking into account the expected service life of wind turbines. A sustained commissioning model is proposed as a theoretical foundation for analysing reasonable growth patterns for technologies that can be sustained in the future. The annual installation and related resource requirements to reach proposed wind capacity are quantified and it is concluded that these factors should be considered when assessing the feasibility, and even the sustainability, of fast energy transitions. Even a sustained commissioning scenario would require significant resource flows, for the transition as well as for sustaining the system, indefinitely. Recent studies that claim there are no potential natural resource barriers or other physical constraints to fast transitions to renewable energy appear inadequate in ruling out these concerns.  相似文献   

16.
A complete stand-alone electrolyser system has been constructed as a transportable unit for demonstration of a sustainable energy facility based on hydrogen and a renewable energy source. The stand-alone unit is designed to support a polymer electrolyte membrane (PEM) stack operating at up to ∼4 kW input power with a stack efficiency of about 80% based on HHV of hydrogen. It is self-pressurizing and intended for operation initially at a differential pressure of less than 6 bar across the membrane electrode assembly with the hydrogen generation side being at a higher pressure. With a slightly smaller stack, the system has been operated at an off-site facility where it was directly coupled to a 2.4 kW photovoltaic (PV) solar array. Because of its potential use in remote areas, the balance-of-plant operates entirely on 12 V DC power for all monitoring, control and safety requirements. It utilises a separate high-current supply as the main electrolyser input, typically 30–40 V at 100 A from a renewable source such as solar PV or wind. The system has multiple levels of built-in operator and stack safety redundancy. Control and safety systems monitor all flows, levels and temperatures of significance. All fault conditions are failsafe and are duplicated, triggering latching relays which shut the system down. Process indicators monitor several key variables and allow operating limits to be easily adjusted in response to experience of system performance gained in the field.  相似文献   

17.
The share of the renewable energy sources (RES) in the global electricity market is substantially increasing as a result of the commitment of many countries to increase the contribution of the RES to their energy mix. However, the integration of RES in the electricity grid increases the complexity of the grid management due to the variability and the intermittent nature of these energy sources. Energy storage solutions such as batteries offer either short-term storage that is not sufficient or longer period storage that is significantly expensive. This paper introduces an energy management approach which can be applied in the case of power and desalinated water generation. The approach is based on mathematical optimization model which accounts for random variations in demands and energy supply. The approach allows using desalination plants as a deferrable load to mitigate for the variability of the renewable energy supply and water and/or electricity demands. A mathematical linear programming model is developed to show the applicability of this idea and its effectiveness in reducing the impact of the uncertainty in the environment. The model is solved for the real world case of Saudi Arabia. The optimal solution accounts for random variations in the renewable energy supply and water and/or electricity demands while minimizing the total costs for generating water and power.  相似文献   

18.
In this study, electric requirement of Gökceada, the biggest island of Turkey is analyzed that how can it be supplied with renewable energy sources. In order to consider the optimal system configuration of hybrid or non-hybrid renewable energy system, the HOMER program is used. At relevant studies which are done about renewable energy sources, it is seen that cost analysis are done according to annual average values. But in this study, HOMER program is used in order to make the system which is generated with computer, as real as possible. On the other studies, it is found out that various changes which are occurred in the year cannot be added to the system. With HOMER; the effect of values which vary by the time like electric load, wind speed and solar radiation, is considered and than the electric system are modelled. For each of these data, 8760 values are formed in HOMER. HOMER cannot model transient changes which is smaller than 1 h. However; it is expressed that, hourly data are sufficient in order to analyze the system like this. In this study; systems which are composed of solar panels, wind turbines and batteries, auxiliary tools are modelled with considered various scenarios. Grid connection or diesel generators for backup power are also modelled. Values of components which form the renewable system of Gökceada, are determined by the simulations. The excess energy which occurs when the energy source is bigger than the load, can be sold to the grid and so, the cost of energy can be reduced. According to the simulation results; it is seen that, energy costs of wind energy systems are lower for Gökceada. It is revealed that wind energy is advantageous in Gökceada especially with grid sales according to the grid connected scenario.  相似文献   

19.
The main purpose of this work is to assess the unavoidable increase in the cost of electricity of a generation system by the integration of the necessary renewable energy sources for power generation (RES-E) technologies in order for the European Union Member States to achieve their national RES energy target. The optimization model developed uses a genetic algorithm (GA) technique for the calculation of both the additional cost of electricity due to the penetration of RES-E technologies as well as the required RES-E levy in the electricity bills in order to fund this RES-E penetration. Also, the procedure enables the estimation of the optimum feed-in-tariff to be offered to future RES-E systems. Also, the overall cost increase in the electricity sector for the promotion of RES-E technologies, for the period 2010–2020, is analyzed taking into account factors, such as, the fuel avoidance cost, the carbon dioxide emissions avoidance cost, the conventional power system increased operation cost, etc. The overall results indicate that in the case of RES-E investments with internal rate of return (IRR) of 10% the cost of integration is higher, compared to RES-E investments with no profit, (i.e., IRR at 0%) by 0.3–0.5 €c/kWh (in real prices), depending on the RES-E penetration level.  相似文献   

20.
This paper presents a methodology for determining the specifications of an isolated R.E.S. power production system on an environmentally sensitive ecosystem. The wind and solar power constitute the primary power generation system and diesel generators act as backup. Real wind and solar potential measurements are used. The wind atlas of the island has been constructed. The specifications of the proposed system are optimized by the life cycle cost method. The renewable energy sources (R.E.S.) total annual energy production exceeds 90%. As a result, the dependence on the diesel generator set annual energy production is limited and the system’s operational cost is not practically influenced by the increasing fossil fuel prices. The introduction of a small size desalination plant for the production of drinkable water is also investigated. Both the available R.E.S. potential and the minimization of environmental impacts are considered for the siting of the equipment. The methodology of the present paper may be applied to other regions rich in R.E.S. potential, where the introduction of small size environmentally friendly isolated R.E.S. power systems is investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号