首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The offshore wave energy resource in the East China Sea (ECS) off the coast of the southern East China is assessed using wave buoy data covering the period of 2011−2013. It is found that the averaged offshore wave power was approximately 13 kW m−1 in the region of interest. Most of the offshore wave energy in the ECS is contributed by the sea states with significant wave heights between 1.5 m and 3.5 m and with wave energy periods between 6 s and 8 s. Seasonal variations are detected in the wave characteristics of significant wave height and wave power. The predominant wave directions are mainly from the II quadrant and the IV quadrant, respectively, in winter and summer, in accordance with the monsoon characteristics in the ECS. Wave heights, periods and power are generally higher in winter and autumn, and weaker in spring and summer; however, extreme values occur in some summer and autumn months due to the extreme conditions caused by typhoons passing over this region. These extreme sea states do not contribute much to the total annual energy, mainly because of their low occurrence, but may bring risks to the wave energy converters.  相似文献   

2.
Ross Henderson   《Renewable Energy》2006,31(2):271-283
The economic viability of a wave energy converter depends largely on its power take-off system. Active control of the power take-off is necessary to maximise power capture across a range of sea-states and can also improve survivability. The high force, low speed regime of wave energy conversion makes it a suitable application for high-pressure hydraulics.This paper describes the hydraulic power take-off system employed in the Pelamis wave energy converter. The process of the system's development is presented, including simulation and laboratory tests at 1/7th and fullscale. Results of efficiency measurements are also presented.  相似文献   

3.
Hysteretic characteristics of Wells turbine for wave power conversion   总被引:1,自引:0,他引:1  
A Wells turbine blade for wave power conversion has hysteretic characteristics in a reciprocating flow. The hysteretic loop is opposite to the well-known dynamic stall of an airfoil. In this paper, the mechanism of the hysteretic behavior was elucidated by an unsteady 3-dimensional Navier-Stokes numerical simulation. It was found that the hysteretic behavior was associated with a streamwise vortical flow appearing near the blade suction surface. And also the effects of solidity, setting angle and blade thickness on the hysteretic characteristics of the Wells turbine have been discussed.  相似文献   

4.
Renewable energy offers significant opportunities for electricity diversification. South Africa belongs to the group of developing nations and encompasses a lot of potential for renewable energy developments. Currently, the majority of its electricity production originates from fossil fuels; however, incorporation of clean coal technologies will aid in reaching the assigned targets. This study offers a long-term wave power quantification analysis with a numerical wave model. The investigation includes long-term resource assessment in the region, variability, seasonal and monthly wave energy content. Locations with high-energy content but low variability pose an opportunity that can contribute in the alleviation of energy poverty. Application of wave converters depends on the combination of complex terms. The study presents resource levels and the joint distributions, which indicate suitability for converter selection. Depending on the region of interest, these characteristics change. Thus, this resource assessment adds knowledge on wave power and optimal consideration for wave energy applicability.  相似文献   

5.
The objective of this paper is to provide a synthetic tool for determining expeditiously the wave climate conditions in several areas of the Mediterranean Sea. In the open literature, several authors have already conducted this specific analysis also for the area under examination in this paper. However, the need of discussing aspects strictly related to the design of wave energy harvesters is still relevant. Therefore, considering the variety of devices and the amount of information needed for conducting both an energy-wise optimization and a structural reliability assessment, a holistic view on the topic is provided. Specifically, the paper elucidates the theoretical aspects involved in the estimation of wave energy statistics and in the calculation of relevant return values. Next, it provides synthetic data representing the mean wave power and the return value of extreme events in several coastal areas of the Mediterranean Sea. In this regard, the paper complements information available in the open literature by discussing the influence of the directional pattern of the sea states in the determination of sea state statistics as well as in the design of a wave energy harvester.  相似文献   

6.
Offshore and nearshore wave energy assessment around the Korean Peninsula   总被引:1,自引:0,他引:1  
A wave resource assessment is presented for the region around the Korean peninsula. Offshore wave power was obtained from significant wave heights and peak periods, and wave directions hindcast for the period of 1979-2003. The spatial distributions for the seasonal and annual averaged wave power were obtained on a 1/6° grid covering the longitudes of 117-143°E and latitudes of 20-50°N. The highest monthly averaged wave power (25 kW/m) was observed on the southwestern side of the peninsula in winter. In order to obtain the wave power around Hongdo, numerical simulations were performed with respect to the monthly averaged waves. The correlation between the significant wave height and energy period was considered to adjust the nearshore wave power obtained by the numerical simulation. The correction procedure was validated from comparing the simulated data with wave buoy data.  相似文献   

7.
This paper presents an advanced design methodology for electric power generation from the vast ocean wave energy. A novel single-buoy heaving device called wave energy converter (WEC) based on hydrostatic transmission (HST), or can be shortened as HSTWEC, is proposed to convert mechanical energy generated by ocean waves into electric energy. Modeling and simulations with both regular and irregular waves were then carried out to investigate working performances of the designed HSTWEC. The results showed that more than 78% of wave energy can be absorbed. In addition, an adaptive controller was designed to improve the performance of the suggested device. Effectiveness of the overall HSTWEC control system was finally proved by simulations.  相似文献   

8.
采用蓄能稳压方式把不稳定能量的输入转换为稳定能量的输出是保证可再生能源发电质量和提高能量转换效率的一种有效方法,波力电站采用该方法实现了独立稳定发电.波浪能的波动性及蓄能稳压系统的特点导致了波力电站发电的间歇性和开始发电时电压的冲击性,这些特点决定了负载配置的特殊性.文章论述了具有抗冲击性负载系统的设计思想、实现方法和试验结果.实际海况试验结果表明,该系统有效地避开了发电机的尖峰电压,不仅实现了对白炽灯的正常供电,还实现了对蓄电池的正常充电.  相似文献   

9.
海洋波浪信息资源评估系统的波力发电应用研究   总被引:3,自引:0,他引:3  
波浪的原始观测数据量大,难以进行直观分析,为此建立了海洋波浪信息资源计算机评估系统,并利用此系统详细评估了浙江嵊山海域的波浪资源.结果表明:该海域波功率为0.5~8.8 kW/m,2 kW/m的频率分布为60%左右,因而在该海区可采用波能发电作为能源供给的一种辅助方式.分析风浪向波功率的频率分布,对于波力发电装置的浪向选择有一定指导意义.在夏季,55%以上波功率频率分布与偏南方向有关;在秋冬季,60%以上波功率频率分布与偏北方向有关.该海区波浪周期集中分布于4~5 s,波高集中分布于1.2~1.5 m,这种集中分布的特点对波能装置的设计和波能的有效利用非常有利.  相似文献   

10.
Modeled nearshore wave propagation was investigated downstream of simulated wave energy converters (WECs) to evaluate overall near- and far-field effects of WEC arrays. Model sensitivity to WEC characteristics and WEC array deployment scenarios was evaluated using a modified version of an industry standard wave model, Simulating WAves Nearshore (SWAN), which allows the incorporation of device-specific WEC characteristics to specify obstacle transmission. The sensitivity study illustrated that WEC device type and subsequently its size directly resulted in wave height variations in the lee of the WEC array. Wave heights decreased up to 30% between modeled scenarios with and without WECs for large arrays (100 devices) of relatively sizable devices (26 m in diameter) with peak power generation near to the modeled incident wave height. Other WEC types resulted in less than 15% differences in modeled wave height with and without WECs, with lesser influence for WECs less than 10 m in diameter. Wave directions and periods were largely insensitive to changes in parameters. However, additional model parameterization and analysis are required to fully explore the model sensitivity of peak wave period and mean wave direction to the varying of the parameters.  相似文献   

11.
Wave energy represents the ‘new entry’ to Renewable Energy Sources discussion, in the context of clean and sustainable energy solutions in the electricity production sector. This research describes a geo-spatial Multiple-Criteria Decision Analysis, based on the Geographic Information Systems technology, for the identification of the best location to deploy a potential Wave Energy Farm in the Ionian Sea, an area offshore the Greek mainland West coast. For this purpose, several factors are taken into consideration; restrictions such as protected areas, military exercise areas etc. and weighted factors such as distance to power grid, wave height etc. The wave resource assessment is completed through real data measurements and numerical wave model approximations. The results pinpoint the most suitable areas for installing the proposed wave power plants, i.e. near the SW coast of Corfu, in the West side of the Straits between Kefallonia and Zakynthos and near the broader area of Pylos, in the SW coast of Peloponnesus. The suggested methodology can be equally applied in other spatial planning cases too, being considered as a checklist, addressed to policy-makers and private investors.  相似文献   

12.
The present scenario of energy market is highly volatile due to large oscillation in the fossil fuel prices. During these periods, the high energy demand for the industries is being partially met through non-conventional energy sources such as wind and solar power. The large untapped energy potential in the Ocean is yet to be exploited due to many technological constraints. The recent decades have shown positive developments worldwide towards the ocean wave energy converters. In the present study, an improved wave energy potential estimate has been made. Based on various parameters such as physical site characteristics, environmental conditions and socio-economic regional state, the selection criteria have been suggested. This would form the basis for energy device selection for the decision makers.  相似文献   

13.
A Wells turbine for wave power conversion has hysteretic characteristics in a reciprocating flow. The hysteretic loop is opposite to the well-known dynamic stall of an airfoil. In this paper, the mechanism of the hysteretic behavior was elucidated by an unsteady 3-dimensional Navier-Stokes numerical simulation. It was found that the hysteretic behavior was associated with a streamwise vortical flow appearing near the blade suction surface. The effects of hub-to-tip ratio and tip clearance on the hysteretic characteristics of the Wells turbine have also been discussed in this paper.  相似文献   

14.
The research on wave energy systems has been ongoing for decades. However, there are not many operational wave energy converters in use. The hydrogen energy systems also have a great potential. The proposed solution is to combine wave energy system with hydrogen energy system. The study provides details of simulation models and related simulation results. It is environmentally friendly, safe, feasible and effective. The results indicate that the proposed system model has a very high potential. With the use of low to medium energy density sea states, it is appears to be possible to generate (for DS1, DS2 and DS3, mH2 = 350.8 kg, 623.9 kg and 2124 kg, respectively) a considerable amount of hydrogen in 20-min. The presented results include WEC motion properties, instantaneous and moving average value of other system parameters. The future promising simulations results indicate that next generation wave energy converter systems could be accompanied by hydrogen generation and storage systems.  相似文献   

15.
This paper aims to provide guidelines for designing the layout of arrays of oscillating Wave Energy Converters (WECs) based on a review of the literature of wave interactions and park effect in WEC arrays that has been published over the past 30 years.First, the fundamentals of wave energy absorption by oscillating bodies are summarised, and the principal differences between the park effect in arrays of wave energy converters and wind turbines are highlighted. Then, the numerical approaches commonly used to deal with WEC arrays are outlined briefly and their limitations are discussed. It is argued that, at present, only Boundary Element Methods (BEM) are capable of the appropriate analysis. Finally, previous work on wave interactions and park effect in WEC arrays is reviewed. Similar trends are found in these studies, which allow conclusions to be drawn regarding the significance of the park effect as a function of the number of WECs in the array and their spacing. Based on these conclusions, the following tentative guidelines are proposed:For small arrays of conventional devices (fewer than 10 devices of typical dimension 10–20 m) with usual layouts (regular or shifted grids with separating distance of order 100–200 m), the park effect appears to be negligible. For larger arrays (more than 10 devices), a negative park effect seems to be increasingly important with increasing number of rows (the lines of WECs perpendicular to the incident wave direction). Therefore, the number of rows should remain as small as possible, with a separating distance as large as possible. For arrays of non-conventional WECs (WECs of typical dimensions much larger than 10–20 m), no information has been found. However, trends similar to the previous cases could be expected, provided that aspect ratios are maintained.  相似文献   

16.
G. Iglesias  R. Carballo 《Energy》2011,36(9):5525-5531
Where should the first wave farm in a region be installed? The nearshore area with the largest resource is the prime candidate. But how should this area be determined? Wave resource analyses typically consider a small number of wave patterns. Does the number of wave patterns influence the outcome? And, more generally, what is the best procedure for selecting the area? This work proposes an approach based on a large number of nearshore wave patterns and applies it to the Galician Southwest, where the first administrative concession for a wave farm (at a site to be determined) is expected to be issued shortly. The sensitivity of the results to the number of wave patterns, hence to the percentages of the total annual energy and time covered in the analysis, is investigated. It is found that the area that emerges as having the largest resource does depend on these percentages. For this reason, conventional analyses based on a small number of wave patterns are not sufficient to reliably determine the area with the largest resource. It is necessary to ensure that a sufficiently large percentage of the total energy is considered, using a procedure like the one proposed in this work.  相似文献   

17.
This paper describes one of the innovative wave energy converters under development by the Lancaster University Renewable Energy Group. An offshore point-absorber wave energy converter, PS Frog Mk 5 consists of a large buoyant paddle with an integral ballasted ‘handle’ hanging below it. The waves act on the blade of the paddle and the ballast beneath provides the necessary reaction. When the WEC is pitching, power is extracted by partially resisting the sliding of a power-take-off mass, which moves in guides above sea level. Totally enclosed in a steel hull, with no external moving parts, PS Frog Mk. 5 is at least as robust as a ship and the survivability of the device is currently under investigation, though such work is beyond the scope of this paper. Such a device could be very economic in terms of power output per unit of capital cost. New inventive steps with experimental results and computer studies have led to promising improvements to the hull shape. The WEC is maintained in a resonant state by the use of special means to maintain a high dynamic magnifier in irregular seas. A robust feedback control system has been developed to ensure stability and maintain efficient power take-off. Some of these developments are described and illustrated with the results of computer simulations that show power outputs and device motion over a range of conditions. It is shown that useful advances have been made, with the power capture bordering on 2 MW in an increasing proportion of sea states.  相似文献   

18.
The variable displacement oil-hydraulic pumps for the Power Take-Off (PTO) of wave energy converters must work above 80% of maximum displacement in order to have an overall efficiency of approximately 94.5%. This is achieved by controlling their rotational speed when the oil-hydraulic power fluctuates in time. Three speed control strategies have been presented, the first fixing the maximum possible speed in each sea state, the second by slowly varying the pump speed between speed peak values and average ones, and the third by working with highly variable speed reference values. The worst pump efficiency is achieved with the first strategy while the best one with the third strategy. However, the first has less impact than the third one in the pump lifecycle. On the other hand, the second strategy is used to make a trade-off between pump efficiency and lifecycle. However, this paper presents a fourth speed control strategy, which is a hybrid of the second and third strategies. So, the objectives of this paper were to know if these strategies are implementable in a test rig and also on a new PTO concept and determining what modifications should be introduced in these PTO strategies and hardware. This paper also contributes with the application of new methodologies in this field of research for the modelling of pump efficiency and pressure control, such as Neuro-Fuzzy modelling and Fuzzy Logic control systems.  相似文献   

19.
This paper addresses the use of numerical wave models for assessing the impact of offshore wave farms on the nearshore wave climate. Previous studies have investigated the effect of energy extraction by wave energy devices through the use of spectral models such as SWAN, representing a wave farm as one or more barriers within the model domain and applying a constant wave energy transmission percentage across the whole wave spectrum incident at the barrier. However, this is an unrealistic representation of the behaviour of real wave energy converters. These will exhibit frequency-dependent energy absorption characteristics that will correspond to the spectral response of the device, and may reflect its ability to be tuned to extract energy at particular frequencies. This study describes a modification of the SWAN source code to enable frequency-dependent wave energy transmission through a barrier. A detailed analysis of the wave climate at the Wave Hub wave farm site is also presented, with a particular focus on the occurrence of bimodal sea states. The modified SWAN code is used to assess how impact predictions for typically occurring sea states may differ when using frequency-dependent rather than constant wave energy transmission, with reference to a previous study using the unmodified code (Millar, Smith and Reeve, 2007 [1]). The results illustrate the dependence of the magnitude of the impact on both the response function of the devices and the spectral sea state in which they are operating.  相似文献   

20.
Wave fields in the Bohai Sea are continuously simulated by the third-generation wave model SWAN in order to determine the wave energy resources from 1985 to 2010. The wind parameters used to simulate waves are obtained by the Regional Atmospheric Modeling System (RAMS). Comparisons of significant wave heights between simulations and observations show good agreement. The spatial distributions of mean monthly and annual averaged significant wave height and wave power flux are presented. Wave energy roses and temporal variations of average wave power density at five typical points in the Bohai Sea are calculated. Furthermore, the correlations between significant wave height and wave energy period are studied in scatter and energy diagrams.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号