首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The world today is faced with serious global warming and environmental pollution. Besides, fossil fuel will become rare and faces serious shortage in the near future. This has triggered the awareness to find alternative energy as their sustainable energy sources. Biodiesel as a cleaner renewable fuel has been considered as the best substitution for diesel fuel due to it being used in any compression ignition engine without any modification. The main advantages of using biodiesel are its renewability and better quality of exhaust gas emissions. This paper reviews the production, performance and emission of palm oil, Jatropha curcas and Calophyllum inophyllum biodiesel. Palm oil is one of the most efficient oil bearing crops in terms of oil yield, land utilization, efficiency and productivity. However, competition between edible oil sources as food with fuel makes edible oil not an ideal feedstock for biodiesel production. Therefore, attention is shifted to non-edible oil like Jatropha curcas and Calophyllum inophyllum. Calophyllum inophyllum oil can be transesterified and being considered as a potential biodiesel fuel. Compared to Palm oil and Jatropha biodiesel industry, biodiesel from Calophyllum inophyllum is still in a nascent state. Therefore, long term endurance research and tribological studies need to be carried out before Calophyllum inophyllum oil base biodiesel can become an alternative fuel in future.  相似文献   

2.
In developing countries like India where 70% of country's petroleum needs are met by import, energy security assumes significance in view of uncertainty of supply and increasing price of petroleum fuels. Fuels of bio origin not only provide energy security, but also reduce emissions of harmful pollutants and greenhouse gases and ensure rural upliftment by increasing employment in agricultural sector. India cannot afford to produce biodiesel from edible oil seeds as it is done in the American and European countries. Extensive focus has been given on producing biodiesel from non-edible sources, specifically from Jatropha. Discrepancies between the expectation and realities regarding Jatropha as a feedstock necessitate efforts for diversification of the feedstocks. Scientific research should therefore be directed towards oilseeds like Karanja, Sal, Mahua, Neem, etc. that are widely available and sustainable to the diverse socio-economic and environmental conditions of rural India. Among them the evergreen neem with its wide availability and various useful uses may be a potential feedstock for biodiesel production. In this paper attempts have been made to overview the morphology of neem tree, various useful uses, physical and chemical characteristics of neem oil and optimized production process for biodiesel production from neem oil.  相似文献   

3.
Jatropha curcas L. is chosen as an ideal biodiesel crop in China because its seed kernel has high oil content (43-61%) and it does not compete with food. Its oil is non-edible, and the trees can resist drought and grow on barren and marginal lands without using arable land. This article reviews the history of Jatropha, current development status and problems in its seeds, propagation, plantation management, oil extraction, biodiesel processing and other value-added products production techniques in China. The commercial production of seed, oil and biodiesel as well as research advancement in China is also introduced and discussed. Examples about our new bred mutant and selected high-oil-yield Jatropha varieties, high-qualified produced biodiesel, and biodiesel pilot plant are presented. Finally, future prospects of Jatropha biodiesel industry in China are discussed.  相似文献   

4.
Jatropha, a non-edible oil seed yielding plant has been identified by the Government of India to produce biodiesel under National Biodiesel Mission. Failure of National Biodiesel Mission Phase-I requires critical analysis of all the possible facts related to its long-term sustainability. Present work identifies important sustainability issues related to promotion of Jatropha biodiesel in India. These sustainability issues have been regrouped in four major categories: technological, environmental, economic and social. This paper attempts to explore various sustainability issues taking into account the recent Indian experiences with possible government support/initiatives for successful adoption of Jatropha biodiesel in Indian scenario.  相似文献   

5.
Edible and non-edible oils are used for the production of biodiesel from the last so many years and these oils are extracted from their respective seeds. Jatropha oil is used as a feedstock to produce biodiesel for running the Compression Ignition engine. A statistical model is developed to interrelate the trans-esterification process variables for the biodiesel yield using design of experiment approach by selecting central composite design of a response surface methodology. Results shown in this paper indicate that the optimum observed yield of 95.5% has the following reaction conditions: Molar ratio 19.84 (% v/v), reaction time 3 h, reaction temperature 70°C, catalyst concentration 4.18 wt% and stirrer rpm 650. Also, the yield produced is higher when compared with 93.5% which was observed by Lee paper using the same methodology. Moreover, the fuel properties of Jatropha biodiesel are closer to the ASTM standard of biodiesel.  相似文献   

6.
A study has been done to consider Malaysian WCO (waste cooking oil) generated in an eco-tourism island, Langkawi, Malaysia as an alternative feedstock for biodiesel production. This paper presents the results of the comprehensive technical feasibility study for production of biodiesel from WCO feedstock. The results have shown feasibility of recycling WCO into biodiesel that is compliant with international fuel standard ASTM D6751. The study has given an indication on the appropriate processing scheme to be developed for recycling WCO into biodiesel as a substitute fuel for diesel vehicles in Langkawi that would enable the promotion of alternative fuel in the energy mix for long term environment sustainability.  相似文献   

7.
The aim of this study is to evaluate the potential use of biodiesel produced from waste cooking oil (WCO) in Mexico and its CO2 emission reduction potential for the Mexican transport sector and associated costs. The results show, based on 2010 data, that the potential of biodiesel from WCO is between 7.8 PJ and 17.7 PJ that represent between 1.5% and 3.3% of petro-diesel consumption for the road transport sector and can reduce between 0.51 and 1.02 Mt of CO2, (1.0%–2.7% of CO2-associated emissions), depending on the recovery ratio of WCO from vegetable oil consumption for cooking and considering CO2 emissions for biodiesel production and methanol emissions during production and combustion in the blend. Primary energy used to produce 1 MJ of WCO-biodiesel is 0.8727 MJ, while literature reports 1.2007 MJ to produce 1 MJ of petro-diesel. Biodiesel costs are similar to petro-diesel costs if WCO is free. The paper offers suggestions for policies that promote increased recollection of WCO for biodiesel production and reduced illegal marketing of WCO, which is the main barrier to increase biodiesel production from WCO. The data used for the analysis is based on a case study of a WCO biodiesel plant that operates in Mexico City.  相似文献   

8.
Biodiesel has high potential as a new and renewable energy source in the future, as a substitution fuel for petroleum-derived diesel and can be used in existing diesel engine without modification. Currently, more than 95% of the world biodiesel is produced from edible oil which is easily available on large scale from the agricultural industry. However, continuous and large-scale production of biodiesel from edible oil without proper planning may cause negative impact to the world, such as depletion of food supply leading to economic imbalance. A possible solution to overcome this problem is to use non-edible oil or waste edible oil (WEO). In this context, the next question that comes in mind would be if the use of non-edible oil overcomes the short-comings of using edible oil. Apart from that, if WEO were to be used, is it sufficient to meet the demand of biodiesel. All these issues will be addressed in this paper by discussing the advantages and disadvantages of using edible oil vs. non-edible vs. WEO as feedstock for biodiesel production. The discussion will cover various aspects ranging from oil composition, oil yield, economics, cultivation requirements, land availability and also the resources availability. Finally, a proposed solution will be presented.  相似文献   

9.
Using biodiesel as a blending component in diesel engine has demonstrated to reduce hydrocarbon and particulate matter emissions. Literature showed that biodiesel type, engine architecture and test conditions deeply affect performance and emission characteristics. Among suitable biodiesel fuels, waste cooking oil (WCO) is considered very attractive due to the reduced environmental impact without sacrificing engine performance.This paper aims at investigating how mixing ratio of biodiesel from WCO and mineral diesel affects the particle size distributions of a current state of art small displacement diesel engine.Experimental tests have been performed on an up-to date light common rail diesel engine. Its complete operative field has been investigated. The results obtained show that the use of biodiesel blends from WCO reduces the total number of particles emitted from the engine with respect to the diesel fuel; the reduction is more evident as the percentage of biodiesel in the blend increases. The number of particles in WCO biodiesel soot with diameter smaller than 10 nm is reduced as compared to diesel fuel; the same trend is observed for diameters larger than 200 nm; comparable particle numbers were obtained in the ultrafine range (Dp < 100 nm).  相似文献   

10.
In this study, techno-economic comparison of three different biodiesel production scenarios integrated with glycerol supercritical water reforming (SCWR) process to produce electricity is conducted. In the first scenario, biodiesel is synthesized from acid-pretreated waste cooking oil (WCO) in the presence of alkali catalyst. In the second scenario, biodiesel is obtained from WCO by acid catalyst. In the third scenario, biodiesel is derived from WCO using acid catalyst, followed by hexane extraction of the produced methyl esters. The glycerol evolved from all the above-mentioned pathways is then subjected to the SCWR process in order to produce hydrogen. The produced hydrogen is then combusted to provide thermal energy required by biodiesel production and purification processes as well as to generate electricity. All the developed scenarios are modeled and simulated in Aspen HYSYS software environment. In order to simplify the simulation process, canola-based WCO is considered as triolein with 6 wt% oleic acid (free fatty acid) and, accordingly, the prepared biodiesel is taken into account as methyl oleate. In order to compare the economic profitability of the developed approaches, several economic indicators including net present value (NPV), internal rate of return (IRR), payback period (PBP), discounted payback period (DPBP), and return on investment (ROI) are used. A sensitivity analysis is also carried out to show how variations in feedstock, biodiesel, and electricity prices can affect the NPV of the developed scenarios. According to the results obtained, the highest IRR and ROI values as decision-making parameters are obtained for the first scenario, manifesting its suitability from the techno-economic viewpoint. The economic indicators of the second scenario are also acceptable and very close to the first approach. Overall, upgrading glycerol into hydrogen using SCWR process appears to be an attractive strategy for enhancing the economic viability of biodiesel production plants.  相似文献   

11.
Finding new biofuel resources and consolidating the preliminary findings on biodiesel extraction are important to optimize mass production. In this paper biodiesel is extracted from non-edible, abundantly available, potential, and viable neem oil. Design of Experiment is employed to optimize the process parameters of the two-stage esterification process. Methanol has the greatest influence in both stages, followed by choice of catalyst and duration. Standard test procedures were followed to ensure the adequacy of the fuel properties, and the results are encouraging in regard to using neem oil as a potentially renewable and sustainable biodiesel source.  相似文献   

12.
Algae can be converted directly into energy, such as biodiesel, bioethanol and biomethanol and therefore can be a source of renewable energy. There is a growing interest for biodiesel production from algae because of its higher yield non-edible oil production and its fast growth that does not compete for land with food production. About 50% of algae weight is oil that this lipid oil can be used to make biodiesel. Algae is capable of yielding 30 times more oil per acre than the crops currently used in biodiesel production. Processes for biodiesel production from algae-oil are similar to food and non-food crops derived biodiesel processes. Because of disadvantages of fossil fuels, renewable energy sources are getting importance for sustainable energy development and environmental protection. Among the renewable sources, Iran has high biofuel energy potential. The Iranian government is considerable attention to the utilization of renewable energy, especially biofuels. Iran has enough land in order to algae cultivation that does not compete with food production. A salt lake (Lake Orumieh) in Iran's West Azarbaijan province, Maharlu salt lake in Iran's Fars province, Qom salt lake in Iran's Qom province have given rise to a new species of algae for biofuel. Algae are frequent in the shallow-marine lime stones in Zagros Mountains in north of Fars province. Greenish blooms of algae can be seen in the Persian Gulf and Caspian Sea, south and north of Iran respectively. This study presents a brief introduction to the resource, status and prospect of algae as a sustainable energy source for biodiesel production in Iran. The main advantages of using algae for biodiesel production in Iran are described.  相似文献   

13.
Recent concerns over the environment, increasing fuel prices and scarcity of its supply have promoted the interest in development of the alternative sources for petroleum fuels. At present, biodiesel is commercially produced from the refined edible vegetable oils such as sunflower oil, palm oil and soybean oil, etc. by alkaline-catalyzed esterification process. This process is not suitable for production of biodiesel from many unrefined non-edible vegetable oils because of their high acid value. Hence, a two-step esterification method is developed to produce biodiesel from high FFA vegetable oils. The biodiesel production method consists of acid-catalyzed pretreatment followed by an alkaline-catalyzed transesterification. The important properties of methyl esters of rubber seed oil are compared with other esters and diesel. Pure rubber seed oil, diesel and biodiesel are used as fuels in the compression ignition engine and the performance and emission characteristics of the engine are analyzed. The lower blends of biodiesel increase the brake thermal efficiency and reduce the fuel consumption. The exhaust gas emissions are reduced with increase in biodiesel concentration. The experimental results proved that the use of biodiesel (produced from unrefined rubber seed oil) in compression ignition engines is a viable alternative to diesel.  相似文献   

14.
As the fossil fuels are depleting day by day, there is a need to find out an alternative fuel to fulfill the energy demand of the world. Biodiesel is one of the best available resources that have come to the forefront recently. In this paper, a detailed review has been conducted to highlight different related aspects to biodiesel industry. These aspects include, biodiesel feedstocks, extraction and production methods, properties and qualities of biodiesel, problems and potential solutions of using vegetable oil, advantages and disadvantages of biodiesel, the economical viability and finally the future of biodiesel. The literature reviewed was selective and critical. Highly rated journals in scientific indexes were the preferred choice, although other non-indexed publications, such as Scientific Research and Essays or some internal reports from highly reputed organizations such as International Energy Agency (IEA), Energy Information Administration (EIA) and British Petroleum (BP) have also been cited. Based on the overview presented, it is clear that the search for beneficial biodiesel sources should focus on feedstocks that do not compete with food crops, do not lead to land-clearing and provide greenhouse-gas reductions. These feedstocks include non-edible oils such as Jatropha curcas and Calophyllum inophyllum, and more recently microalgae and genetically engineered plants such as poplar and switchgrass have emerged to be very promising feedstocks for biodiesel production.It has been found that feedstock alone represents more than 75% of the overall biodiesel production cost. Therefore, selecting the best feedstock is vital to ensure low production cost. It has also been found that the continuity in transesterification process is another choice to minimize the production cost. Biodiesel is currently not economically feasible, and more research and technological development are needed. Thus supporting policies are important to promote biodiesel research and make their prices competitive with other conventional sources of energy. Currently, biodiesel can be more effective if used as a complement to other energy sources.  相似文献   

15.
Research on alternative fuel for the vehemently growing number of automotivesis intensified due to environmental reasons rather than turmoil in energy price and supply. From the policy and steps to emphasis the use of biofuel by governments all around the world, this can be comprehended that biofuel have placed itself as a number one substitute for fossil fuels. These phenomena made Southeast Asia a prominent exporter of biodiesel. But thrust in biodiesel production from oilseeds of palm and Jatropha curcas in Malaysia, Indonesia and Thailand is seriously threatening environmental harmony. This paper focuses on this critical issue of biodiesels environmental impacts, policy, standardization of this region as well as on the emission of biodiesel in automotive uses. To draw a bottom line on feasibilities of different feedstock of biodiesel, a critical analysis on oilseed yield rate, land use, engine emissions and oxidation stability is reviewed. Palm oil based biodiesel is clearly ahead in all these aspects of feasibility, except in the case of NOx where it lags from conventional petro diesel.  相似文献   

16.
In this work, the quality of biodiesel produced by basic transesterification from several vegetable oils (soybean, rapeseed, sunflower, high oleic sunflower, Cynara Cardunculus L., Brassica Carinata and Jatropha Curca) cultivated in Extremadura has been studied in detail. The influence of raw material composition on properties such as density, viscosity, cetane number, higher heating value, iodine and saponification values and cold filter plugging point has been verified. Other biodiesel properties such as acid value, water content and flash and combustion points were more dependent on characteristics of production process. Biodiesel produced by rapeseed, sunflower and high oleic sunflower oils transesterification have been biofuels with better properties according to Norm EN 14214. Finally, it has been tested that it is possible to use oils mixtures in biodiesel production in order to improve the biodiesel quality. In addition, with the same process conditions and knowing properties of biodiesel from pure oils; for biodiesel from oils mixtures, its methyl esters content, and therefore properties dependent this content can be predicted from a simple mathematical equation proposed in this work.  相似文献   

17.
The aim of this research is to present the possibilities of the use of non-edible oils in biodiesel production, to consider the various methods for treatment of non-edible oils and to emphasise the influence of the operating and reaction conditions on the process rate and the ester yield. Because of biodegradability and non-toxicity biodiesel has become more attractive as alternative fuel. Biodiesel is produced mainly from vegetable oils by transesterification. For economic and social reasons, edible oils should be replaced by lower-cost and reliable feedstock for biodiesel production, such as non-edible plant oils. In this work biodiesel is produced from neem and Karanja by using butanol, propanol, ethanol and methanol as alcohols and KOH and NaOH as alkali catalysts by the transesterification process. The aim of this research is to analyse the different reaction parameters such as catalyst concentration, type of catalyst, types of alcohol, alcohol to oil molar ratio, reaction time and reaction temperature on the yield of biodiesel from non-edible oils. The maximum yield obtained was 95% with Karanja as oil with methanol and KOH as alkali catalyst at oil to alcohol molar ratio of 6:1 in 1 h at 60°C. Special attention is paid to the possibilities of producing biodiesel from non-edible oils.  相似文献   

18.
The petroleum fuels play a major role in industry, agriculture, and transport besides meeting out many other basic human needs. However, fossil fuels are limited in quantity and are depleting day by day as the consumption is increasing very rapidly. Biodiesel is one such fuel in which there is a lot of hope. In the recent past, biodiesel received considerable attention as a renewable fuel. In India, it has not been possible to produce biodiesel from edible oils since the same is very scarce. Hence, the scope of opting to non-edible oils from plants as raw material for biodiesel production recently gained momentum. This paper presents the production of biodiesel from nonedible, Neochloris oleoabundans oil and its characterization. The studies were carried out on transesterification of oil with methanol, sodium hydroxide, and Sodium methoxide as catalyst for the production of biodiesel. The process parameters such as catalyst concentration, reaction time, and reaction temperature were optimized for the production of Neochloris oleoabundans oil biodiesel. The biodiesel yield of 95.15% was noticed at optimal process parameters.  相似文献   

19.
Luiz A.H. Nogueira 《Energy》2011,36(6):3659-3666
In several countries biodiesel blending programs have been implemented looking for reduction in fossil fuel dependence and environmental benefits, including climate change mitigation. The current global biodiesel production, from different fatty raw materials, reaches about 6 billion liters per year and represents 10% of whole biofuel production. Nevertheless, in many cases the actual advantages of biodiesel production and usage are not clearly evaluated. Essentially, the feasibility of biodiesel production can be determined by its efficiency in solar energy conversion, as indicated by agro-industrial productivity and energy balance parameters, which expresses a relative demand of natural resources (land and energy) to produce biofuel. Taking into account the Brazilian conditions, in this paper an assessment of biodiesel production is presented, comparing four different productive systems. According to this evaluation, soybean and castor are limitedly feasible, whereas tallow and palm oil represent more suitable alternatives. The selection of an efficient productive system is crucial for the rationality of biodiesel production.  相似文献   

20.
The aim of this research is to identify and quantify the categories which have the largest environmental impact in the biodiesel production process from Jatropha curcas L oil. The Jatropha curcas L is selected due to its availability in Cuba, so 400 L/d was defined as a functional unit. The valorization analysis was conducted taking into account the conventional Jatropha curcas L oil production. The analysis is conducted based on several factors such as the use of synthetic fertilizers, pesticides, and agriculture wastes. The activities of agriculture and industrial stages are shown. The Life Cycle Assessment is addressed according to the ISO 14040 series, by using the Ecoinvent database 2003 and the Eco-indicator 99 methodology. Based on the obtained results, the environmental performance of the production of biodiesel from Jatropha curcas L oil has a good environmental behavior. The agriculture stage shows the greatest impact due to land use and fossil fuel depletion. In addition, electricity has the highest impact due to respiratory effects from the emission of tiny material particles into the atmosphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号