首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This paper introduces a framework for the assessment of damage of offshore wind turbines (OWTs) supported by jackets under extreme environmental loadings. Performance levels/damage states, ranging from operational/undamaged to near collapse/severely damaged, are defined based on static pushover analyses. An example performance assessment is presented for an OWT supported by a jacket based on environmental conditions for a site off Massachusetts along U.S. Atlantic coast. The environmental conditions are characterized based on two methods for estimating wind and wave conditions, one on extrapolation of NOAA buoy measurements and one on a stochastic hurricane catalog, and two models for extreme wave height, one on the crest height and one on the zero-up-crossing height. Using probabilistic models for demands and capacities, two curves of fragility, one estimating the initiation of yielding and the other estimating the onset of collapse, are developed to distinguish between the three damage states. The curves are applied to four combinations of two environmental hazard models and two extreme wave height models, and significant differences are found in the probability of damage among the four combinations of models. The findings have potential implications for the evaluation of the overall risk profile and associated performance for offshore wind farms.  相似文献   

2.
The support structure damping of a 3.6 MW pitch controlled variable speed offshore wind turbine on a monopile foundation is estimated both in standstill conditions and in normal operation. The net substructure damping is identified from the parameters of an exponential curve fitted to the relative maxima of an impulse response caused by a boat impact. The result is used in the verification of the non aerodynamic damping in normal operation for low wind speeds. The auto-correlation function technique for damping estimation of a structure under ambient excitation was validated against the identified damping from the decaying time series. The Enhanced Frequency Domain Decomposition (EFDD) method was applied to the wind turbine response under ambient excitation, for estimation of the damping in normal operation. The aero-servo-hydro-elastic tool HAWC2 is validated with offshore foundation load measurements. The model was tuned to the damping values obtained from the boat impact to match the measured loads. Wind turbulence intensity and wave characteristics used in the simulations are based on site measurements. A flexible soil model is included in the analysis. The importance of the correctly simulated damping in the model is stressed for accurate load prediction. Differences in the identified damping between the model and the wind turbine are detailed and explained. Discrepancies between simulated and measured loads are discussed.  相似文献   

3.
Offshore wind industry has exponentially grown in the last years. Despite this growth, there are still many uncertainties in this field. This paper analyzes some current uncertainties in the offshore wind market, with the aim of going one step further in the development of this sector. To do this, some already identified uncertainties compromising offshore wind farm structural design have been identified and described in the paper. Examples of these identified uncertainties are the design of the transition piece and the difficulties for the soil properties characterization.Furthermore, this paper deals with other uncertainties not identified yet due to the limited experience in the sector. To do that, current and most used offshore wind standards and recommendations related to the design of foundation and support structures (IEC 61400-1, 2005; IEC 61400-3, 2009; DNV-OS-J101, Design of Offshore Wind Turbine, 2013 and Rules and Guidelines Germanischer Lloyd, WindEnergie, 2005) have been analyzed. These new identified uncertainties are related to the lifetime and return period, loads combination, scour phenomenon and its protection, Morison – Froude Krilov and diffraction regimes, wave theory, different scale and liquefaction.In fact, there are a lot of improvements to make in this field. Some of them are mentioned in this paper, but the future experience in the matter will make it possible to detect more issues to be solved and improved.  相似文献   

4.
Korea has huge potential for offshore wind energy and the first Korean offshore wind farm has been initiated off the southwest coast. With increasing water depth, different substructures of the offshore wind turbine, such as the jacket and multipile, are the increasing focus of attention because they appear to be cost-effective. However, these substructures are still in the early stages of development in the offshore wind industry. The aim of the present study was to design a suitable substructure, such as a jacket or multipile, to support a 5 MW wind turbine in 33 m deep water for the Korean Southwest Offshore Wind Farm. This study also aimed to compare the dynamic responses of different substructures including the monopile, jacket and multipile and evaluate their feasibility. We therefore performed an eigenanalysis and a coupled aero-hydro-servo-elastic simulation under deterministic and stochastic conditions in the environmental conditions in Korea. The results showed that the designed jacket and multipile substructures, together with the modified monopile, were well located at soft–stiff intervals, where most modern utility-scale wind turbine support structures are designed. The dynamic responses of the different substructures showed that of the three substructures, the performance of the jacket was very good. In addition, considering the simple configuration of the multipile, which results in lower manufacturing cost, this substructure can provide another possible solution for Korean’s first offshore wind farm. This study provides knowledge that can be applied for the deployment of large-scale offshore wind turbines in intermediate water depths in Korea.  相似文献   

5.
Cost of energy generated from offshore wind is impacted by maintenance cost to a great extent. Cost of maintenance depends primarily on the strategy for performing maintenance. In this paper a maintenance cost model for offshore wind turbine components following multilevel opportunistic preventive maintenance strategy is formulated. In this strategy, opportunity for performing preventive actions on components is taken while a failed component is replaced. Two kinds of preventive actions are considered, preventive replacement and preventive maintenance. In the former, components that undergo that action become as good as new (i.e., the replaced components, are not just as good as new, but are actually new), but in the latter, ages of components are reduced to some degree depending on the level of maintenance action. Total cost associated with maintenance depends on the setting of age groups that determine which component should be preventively maintained and to what degree. Through optimum selection of the number of age groups, cost of maintenance can be minimized. A model is formulated where total maintenance cost is expressed as a function of number of age groups for components. A numerical study is used to illustrate the model. The results show that total cost of maintenance is significantly impacted by number of age groups and age thresholds set for components.  相似文献   

6.
The estimation of fatigue lifetime for an offshore wind turbine support structure requires a large number of time‐domain simulations. It is an important question whether it is possible to reduce the number of load cases while retaining a high level of accuracy of the results. We present a novel method for simplified fatigue load assessments based on statistical regression models that estimate fatigue damage during power production. The main idea is to predict the total fatigue damage only and not also the individual damage values for each load case. We demonstrate the method for a jacket‐type support structure. Reducing the number of simulated load cases from 21 to 3, the total fatigue damage estimate exhibited a maximum error of about 6% compared with the complete assessment. As a consequence, a significant amount of simulation time can be saved, in the order of a factor of seven. This quick fatigue assessment is especially interesting in the application of structural optimization, with a large number of iterations. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
Innovative solutions need to be developed for harvesting wind energy far offshore. They necessarily involve on-board energy storage because grid-connection would be prohibitively expensive. Hydrogen is one of the most promising solutions. However, it is well-known that it is challenging to store and transport hydrogen which may have a critical impact on the delivered hydrogen cost.In this paper, it is shown that there are vast areas far offshore where wind power is both characterized by high winds and limited seasonal variations. Capturing a fraction of this energy could provide enough energy to cover the forecast global energy demand for 2050. Thus, scenarios are proposed for the exploitation of this resource by fleets of hydrogen-producing wind energy converters sailing autonomously. The scenarios include transportation and distribution of the produced hydrogen.The delivered hydrogen cost is estimated for the various scenarios in the short term and in the longer term. Cost estimates are derived using technical and economic data available in the literature and assumptions for the cost of electricity available on-board the wind energy converters. In the shorter term, delivered cost estimates are in the range 7.1–9.4 €/kg depending on the scenario and the delivery distance. They are based on the assumption of on-board electricity cost at 0.08€/kWh. In the longer term, assuming an on-board electricity cost at 0.04€.kWh, the cost estimates could reduce to 3.5 to 5.7 €/kg which would make the hydrogen competitive on several hydrogen markets without any support mechanism. For the hydrogen to be competitive on all hydrogen markets including the ones with the highest GHG emissions, a carbon tax of approximately 200 €/kg would be required.  相似文献   

8.
Understanding the impact of wave-induced dynamic effects on the aerodynamic performance of Offshore Floating Wind Turbines (OFWTs) is crucial towards developing cost-effective floating wind turbines to harness wind energy in deep water sites. The complexity of the wake of an OFWT has not yet been fully understood. Measurements and numerical simulations are essential. An experiment to investigate the aerodynamics of a model OFWT was undertaken at the University of Malta. Established experimental techniques used to analyse fixed HAWTs were applied and modified for the floating turbine condition. The effects of wave induced motions on the rotor aerodynamic variables were analysed in detail. An open source free-wake vortex code was also used to examine whether certain phenomena observed in the experiments could be reproduced numerically by the lifting line method. Results from hot wire measurements and free-wake vortex simulations have shown that for OFWTs surge-induced torque fluctuations are evident. At high λ a discrepancy in the mean CP between the fixed and floating conditions was found from measurements and numerical simulations.  相似文献   

9.
Most existing and planned offshore wind turbines (OWTs) are located in shallow water where the possibility of breaking waves impacting the structure may influence design. Breaking waves and their associated impact loads are challenging to model because the breaking process is a strongly non‐linear phenomenon with significant statistical scattering. Given the challenges and uncertainty in modeling breaking waves, there is a need for comparing existing models with simultaneous environmental and structural measurements taken from utility‐scale OWTs exposed to breaking waves. Overall, such measurements are lacking; however, one exception is the Offshore Wind Turbines at Exposed Sites project, which recorded sea state conditions and associated structural loads for a 2.0 MW OWT supported by a monopile and located at the Blyth wind farm off the coast of England. Measurements were recorded over a 17 month campaign between 2001 and 2003, a period that included a storm that exposed the instrumented OWT to dozens of breaking waves. This paper uses the measurements from this campaign to categorize and identify breaking waves and quantify the variability of their impact loads. For this particular site and turbine, the distribution of measured mudline moments due to breaking waves has a mean of 8.7 MN‐m, a coefficient of variation of 26% and a maximum of 14.9 MN‐m. The accuracy of several breaking wave limits and impact force models is compared with the measurements, and the impact force models are shown to represent the measurements with varying accuracy and to be sensitive to modeling assumptions. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
Daniel Zwick  Michael Muskulus 《风能》2015,18(8):1421-1432
Stochastic representations of turbulent wind and irregular waves are used in time domain simulations of offshore wind turbines. The variability due to finite sampling of this input loading is an important source of simulation error. For the OC4 reference jacket structure with a 5 MW wind turbine, an error of 12–34% for ultimate loads and 6–12% for fatigue loads can occur with a probability of 1%, for simulations with a total simulation length of 60 min and various load cases. In terms of fatigue life, in the worst case, the lifetime of a joint was thereby overestimated by 29%. The size of this error can be critical, i.e., ultimate or fatigue limits can be exceeded, with probability depending on the choice of number of random seeds and simulation length. The analysis is based on a large simulation study with about 30,000 time domain simulations. Probability density functions of response variables are estimated and analyzed in terms of confidence intervals; i.e., how probable it is to obtain results significantly different from the expected value when using a finite number of simulations. This simulation error can be reduced to the same extent, either using several short simulations with different stochastic representations of the wind field or one long simulation with corresponding total length of the wind field. When using several short‐term simulations, it is important that ultimate and fatigue loads are calculated based on the complete, properly combined set of results, in order to prevent a systematic bias in the estimated loads. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
The problem of sizing an electricity storage for a 5000 inhabitants island supplied by both marine renewables (offshore wind and waves) and the mainland grid is addressed by a case study based on a full year resource and consumption data. Generators, transmission lines and battery storage are accounted for through basic simplified models while the focus is put on electricity import/export budget. Self-sufficiency does not seem a reasonable goal to pursue, but partial autonomy provided by renewable sources and a medium size storage would probably be profitable to the island community.  相似文献   

12.
This paper presents a decision support model that assesses offshore suitability for floating wind turbine installation. The model is based on Multi-Criteria Analysis and Geographic Information Systems. An implementation of the model for the Aegean Sea is also presented. The methodological approach followed consists of four stages. The first stage excludes sites that are inappropriate for wind turbine siting based on legislative constraints. At the second stage, a set of evaluation criteria are used in order to identify the most suitable areas for floating wind turbine installation. Next stage is the economic evaluation of the highest-scored sites, as they resulted from final suitability map. Finally, a sensitivity analysis on the weights of the criteria is carried out. Results indicated that only a small percentage of the case study is characterised as appropriate for floating wind turbine siting, although wind potential is considered strong in more sites.  相似文献   

13.
Accurate prediction of long‐term ‘characteristic’ loads associated with an ultimate limit state for design of a 5‐MW bottom‐supported offshore wind turbine is the focus of this study. Specifically, we focus on predicting the long‐term fore–aft tower bending moment at the mudline and the out‐of‐plane bending moment at the blade root of a monopile‐supported shallow‐water offshore wind turbine. We employ alternative probabilistic predictions of long‐term loads using inverse reliability procedures in establishing the characteristic loads for design. Because load variability depends on the environmental conditions (defining the wind speed and wave height), we show that long‐term predictions that explicitly account for such load variability are more accurate, especially for environmental states associated with above‐rated wind speeds and associated wave heights. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
Considering nonlinear soil–pile interaction, seismic fragility analysis of offshore wind turbine was performed. Interface between ground soils and piles were modeled as nonlinear spring elements. Ground excitation time histories were applied to spring boundaries. Two methods of applying ground motion were compared. Different time histories from free field analysis were applied to each boundary in the first loading plan (A). They were compared with the second loading plan (B) in which the same ground motion is applied to all boundaries. Critical displacement for wind turbine was proposed by using push-over analysis. Both the stress based and the displacement based fragility curves were obtained using dynamic responses for different peak ground accelerations (PGAs). In numerical example, it was shown that seismic responses from loading plan A are bigger than from plan B. It seems that the bigger ground motion at surface can cause less response at wind turbine due to phase difference between ground motions at various soil layers. Finally, it can be concluded that layer by layer ground motions from free field analysis should be used in seismic design of offshore wind turbine.  相似文献   

15.
Most large‐eddy simulation studies related to wind energy have been carried out either by using a fixed pressure gradient to ensure that mean wind direction is perpendicular to the wind turbine rotor disk or by forcing the flow with a geostrophic wind and timely readjusting the turbines' orientation. This has not allowed for the study of wind farm characteristics with a time‐varying wind vector. In this paper, a new time‐adaptive wind turbine model for the large‐eddy simulation framework is introduced. The new algorithm enables the wind turbines to dynamically realign with the incoming wind vector and self‐adjust the yaw orientation with the incoming wind vector similar to real wind turbines. The performance of the new model is tested first with a neutrally stratified atmospheric flow forced with a time‐varying geostrophic wind vector. A posteriori, the new model is used to further explore the interaction between a synthetic time‐changing thermal atmospheric boundary layer and an embedded wind farm. Results show that there is significant potential power to be harvested during the unstable time periods at the cost of designing wind turbines capable of adapting to the enhanced variance of these periods. Stable periods provide less power but are more constant over time with an enhanced lateral shear induced by an increased change in wind direction with height. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
The offshore wind resources globally present a great opportunity for green power generation. Both types, fixed and floating foundations, will play a major role in utilizing these resources. The preliminary design of the floating system called GICON®-Tension Leg Platform (TLP) is meant to provide a solution for harnessing the power of offshore wind at water depths between 20 m and 350 m. In addition a design for water depth up to 700 m is currently under development. The research project is a joint development of private industry and academic institutions. The main partners are ESG GmbH and Technische Universität Freiberg. Currently ongoing research includes the comparison of calculated data with experimental data obtained by wave tank experiments with a scale model at the Maritime Research Institute Netherlands (MARIN) in June 2013. These tests have provided insights regarding the dynamic characteristics of the GICON®-TLP by analyzing the system's response to different load cases. Furthermore, the results of the scale model tests at MARIN have confirmed that a superposition of the internal forces for wind and wave loads can be assumed for the structural design. This can be traced back to the stiffness of the mooring line system and the innovative mooring line configuration.  相似文献   

17.
The protection of wind turbines from lightning damage is increasingly important as they increase in size and are placed in locations where access to carry out repairs may be difficult. As blades are the most common attachment point of lightning, they must be adequately protected. In addition, the passage of lightning current through wind turbine bearings introduces a risk of lightning damage to these vital components. Investigations relating to the improvement of blade lightning protection systems have been carried out, including experiments designed to address the difficult problems involved in the protection of hydraulic cylinders used for tip brake control. Work has also focused on the ability of lightning current to cause damage to wind turbine bearings. The work has been a mixture of computer simulations and experimental testing using high‐voltage and high‐current facilities. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

18.
Wind turbine rotors are normally designed such that rotor power coefficient is maximized. Much of this methodology has been inherited from the aviation industry. This paper points out that designing machines for maximum rotor aerodynamic efficiency does not necessarily lead to a lower levelized cost of energy. The argument sits on the premise that levelized cost of energy is strongly influenced by machine capital expenditure (CAPEX) and annual energy production (AEP). We therefore assume that the true design objective is to minimize the CAPEX/AEP ratio. The basis of an alternative design path is presented, which centres on the minimization of total volume of structural material in the wind turbine. This is done whilst maintaining a given rated power. This alternative methodology requires the removal of conventional pre‐set design variables and assumptions which relate to the maximization of rotor power coefficient. We examine how changing chord length, axial induction factor and aerofoil lift coefficient affect material volume in the blade. Following this, we use a custom‐made blade element momentum programme to explore the relative CAPEX of machines with varying design axial induction factor and varying lift coefficient. This relative cost is calibrated to the 5 MW National Renewable Energy Laboratory offshore reference turbine. The effects on the rotor, drivetrain and tower are considered. For a 5 MW offshore machine, it is shown that an overall CAPEX/AEP reduction of over 2% can be achieved by using a low‐induction rotor with blades possessing aerofoils operating at non‐peak lift to drag ratios. This economy is delivered notwithstanding a 2.3% drop in design rotor power coefficient. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
This work presents simulation results from a system where offshore wind power is used to produce hydrogen via electrolysis. Real-world data from a 2.3 MW floating offshore wind turbine and electricity price data from Nord Pool were used as input to a novel electrolyzer model. Data from five 31-day periods were combined with six system designs, and hydrogen production, system efficiency, and production cost were estimated. A comparison of the overall system performance shows that the hydrogen production and cost can vary by up to a factor of three between the cases. This illustrates the uncertainty related to the hydrogen production and profitability of these systems. The highest hydrogen production achieved in a 31-day period was 17 242 kg using a 1.852 MW electrolyzer (i.e., utilization factor of approximately 68%), the lowest hydrogen production cost was 4.53 $/kg H2, and the system efficiency was in the range 56.1–56.9% in all cases.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号