首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In modern smart grids and deregulated electricity markets, accurate forecasting of solar irradiance is critical for determining the total energy generated by PV systems. We propose a mixed wavelet neural network (WNN) in this paper for short-term solar irradiance forecasting, with initial application in tropical Singapore. The key advantage of using wavelet transform (WT) based methods is the high signal compression ability of wavelets, making them suitable for modeling of nonstationary environmental parameters with high information content, such as short timescale solar irradiance. In this WNN, a combination of the commonly known Morlet and Mexican hat wavelets is used as the activation function for hidden-layer neurons of a feed forward artificial neural network (ANN). To demonstrate the effectiveness of the proposed approach, hourly predictions of solar irradiance, which is an aggregate sum of irradiance value observed using 25 sensors across Singapore, are considered. The forecasted results show that WNN delivers better prediction skill when compared with other forecasting techniques.  相似文献   

2.
一种多逆变器太阳能光伏并网发电系统的组群控制方法   总被引:4,自引:3,他引:1  
对光伏发电系统中的光伏阵列一逆变器对进行轮循分组控制,在逆变器输入功率小于设定的下限阈值时,部分光伏阵列并联后连接到一台逆变器输出;在并联开关分合闸过程中,一直保持光伏阵列以最大功率不问断输出;并且该方法对光照突变情况进行自适应判断,作为控制的预启动条件。此方法的优点是:能够同时提高逆变器和光伏阵列的转换效率,改善电能质量,降低并联开关和逆变器的动作次数,延长设备使用寿命,并且控制过程系统输出功率平稳。  相似文献   

3.
Anthropogenic haze, caused at least in parts by forest and agricultural land clearing fires in Sumatra (Indonesia), is occasionally causing air quality issues in Singapore, located 150–300 km east of the majority of these “hot spots”. The resulting air pollution partially blocks sunlight from reaching the ground, and consequently affects the electric power generation of solar photovoltaic (PV) systems in Singapore. In this work, a methodology is presented to estimate the haze-induced reduction of the light intensity reaching PV panels and the corresponding loss in the electric energy yield. An assessment of a major haze event in June 2013 is the basis for the loss analysis, which takes into account data filtering techniques in order to isolate cloudless conditions for inter-comparison between clear and hazy days. Data from previous years in non-hazy conditions serve as baseline for the determination of the clear sky conditions for Singapore. The novel method is further applied to investigate the power output of ten PV systems in Singapore during the June 2013 haze event. It is found that poor air quality levels during this event caused yield losses of PV systems in Singapore in the range of 15–25%.  相似文献   

4.
Nowadays, the penetration of photovoltaic (PV) solar power generation in distributed generation (DG) systems is growing rapidly. This condition imposes new requirements to the operation and management of the distribution grid, especially when high integration levels are achieved. Under this scenario, the power electronics technology plays a vital role in ensuring an effective grid integration of the PV system, since it is subject to requirements related not only to the variable source itself but also to its effects on the stability and operation of the electric grid. This paper proposes an enhanced interface for the grid connection of solar PV generation systems. The topology employed consists of a three-level cascaded Z-source inverter that allows the flexible, efficient and reliable generation of high quality electric power from the PV plant. A full detailed model is described and its control scheme is designed. The dynamic performance of the designed architecture is verified by computer simulations.  相似文献   

5.
准确的太阳能发电功率短期预测是保证电力调度和大规模光伏并网的关键。该文对近年来光伏发电功率短期预测研究进展进行综述,并对影响光伏发电功率的各种气象因素进行相关性分析。针对用于光伏发电短期功率预测的人工神经网络模型和深度学习模型进行总结和评述。太阳辐照度是影响预测模型精度的主要气象参数。在光伏发电功率短期预测中,神经网络及其组合模型均表现出较好的预测精度,但组合模型整体上优于单一预测模型。  相似文献   

6.
分析了风光互补发电系统的技术优势,设计了基于固态变压器结构的并网型风光互补发电系统。分别建立了光伏系统,风力发电系统,超级电容和蓄电池的模型,并分析各环节的控制策略,提出了基于平均功率的储能设备容量配置方法。仿真结果表明,该系统能模拟风光互补系统在不同模式下的运行特性,可以有效降低功率波动和维持电压稳定,并能在低光照强度、低风速等情况下为系统提供短时能量支撑。  相似文献   

7.
通过对唐山市区太阳能和风能资源状况调查分析,对全年不同方位角和倾角上的太阳能辐射量进行模拟计算,得出南偏东9.8°方向、倾角为39.7°的倾斜面上接收的太阳能辐射量最大,其值为1.62×106Wh/m2。研究中对3kW风力发电机和1kW光伏发电系统的发电量进行了计算,并以1辆纯电动轿车为负载进行了容量配比优化,设计了风力发电系统、风光互补系统及光伏系统三种不同的方案,经过对各方案的经济性、可靠性及稳定性分析,得出最佳的设计方案为风光互补发电系统,该系统风力发电装机容量为3kW,光伏发电装机容量为8.96kW。  相似文献   

8.
Insolation-oriented model of photovoltaic module using Matlab/Simulink   总被引:1,自引:0,他引:1  
Huan-Liang Tsai 《Solar Energy》2010,84(7):1318-1326
This paper presents a novel model of photovoltaic (PV) module which is implemented and analyzed using Matlab/Simulink software package. Taking the effect of sunlight irradiance on the cell temperature, the proposed model takes ambient temperature as reference input and uses the solar insolation as a unique varying parameter. The cell temperature is then explicitly affected by the sunlight intensity. The output current and power characteristics are simulated and analyzed using the proposed PV model. The model verification has been confirmed through an experimental measurement. The impact of solar irradiation on cell temperature makes the output characteristic more practical. In addition, the insolation-oriented PV model enables the dynamics of PV power system to be analyzed and optimized more easily by applying the environmental parameters of ambient temperature and solar irradiance.  相似文献   

9.
对在北京地区屋面上固定角度安装(目前光伏发电应用中最常见的安装形式)的非晶硅和多晶硅太阳电池组件进行了近二年的数据采集,纪录了北京地区温度数据和太阳电池阵列的实际发电量,分析了它们各自的特点,为用户更为关心的户外使用情况提供了参考依据;认为如果仅从温度特性考虑,是否采用非晶硅替代晶体硅电池在不同地区应有不同考虑,如果再考虑到人们普遍认为的非晶硅电池没有解决的稳定性问题,表面玻璃的非钢化、效率低等其它问题,非晶硅的使用应慎重,不应盲从.同时在使用中不论何种电池都不应忽视组件的通风问题.  相似文献   

10.
A technico-economic analysis based on integrated modeling, simulation, and optimization approach is used in this study to design an off grid hybrid solar PV/Fuel Cell power system. The main objective is to optimize the design and develop dispatch control strategies of the standalone hybrid renewable power system to meet the desired electric load of a residential community located in a desert region. The effects of temperature and dust accumulation on the solar PV panels on the design and performance of the hybrid power system in a desert region is investigated. The goal of the proposed off-grid hybrid renewable energy system is to increase the penetration of renewable energy in the energy mix, reduce the greenhouse gas emissions from fossil fuel combustion, and lower the cost of energy from the power systems. Simulation, modeling, optimization and dispatch control strategies were used in this study to determine the performance and the cost of the proposed hybrid renewable power system. The simulation results show that the distributed power generation using solar PV and Fuel Cell energy systems integrated with an electrolyzer for hydrogen production and using cycle charging dispatch control strategy (the fuel cell will operate to meet the AC primary load and the surplus of electrical power is used to run the electrolyzer) offers the best performance. The hybrid power system was designed to meet the energy demand of 4500 kWh/day of the residential community (150 houses). The total power production from the distributed hybrid energy system was 52% from the solar PV, and 48% from the fuel cell. From the total electricity generated from the photovoltaic hydrogen fuel cell hybrid system, 80.70% is used to meet all the AC load of the residential community with negligible unmet AC primary load (0.08%), 14.08% is the input DC power for the electrolyzer for hydrogen production, 3.30% are the losses in the DC/AC inverter, and 1.84% is the excess power (dumped energy). The proposed off-grid hybrid renewable power system has 40.2% renewable fraction, is economically viable with a levelized cost of energy of 145 $/MWh and is environmentally friendly (zero carbon dioxide emissions during the electricity generation from the solar PV and Fuel Cell hybrid power system).  相似文献   

11.
The utilisation of renewable energy resources for power generation is extremely important for Ireland due to the lack of indigenous fossil fuel resources. A micro-wind turbine is by far the most commonly used grid-connected micro-renewable electricity generation system for domestic applications in Ireland, followed by solar PV. Unfortunately, neither a single micro-wind turbine nor a single solar PV system can provide a continuous power supply due to variations in weather and climate conditions. The coupling of these two systems however can improve the power supply reliability by using the complementary characteristics of wind and solar energy. In this paper, a micro-renewable electricity-generation-system integration technique, tailored for applications in Ireland but generally applicable, is presented. Net present value is the parameter used to identify the optimal system. The optimal system can be a mono system, formed from a single micro-wind turbine or a single solar PV system, or a hybrid system formed from a combination of both. A renewable energy requirement is a constraint used in the integration to eliminate systems that cannot provide sufficient energy from renewable energy resources. The integration technique is applied to find the optimal system, under current Irish conditions, that can be formed from six sample micro-wind turbines and/or solar PV systems assembled from three sample solar PV modules. The analyses show that, with a 50% renewable energy requirement, the optimal system is a mono system containing a 2.4 kW micro-wind turbine; however, critically, the system is not economically viable. Four parameter studies assessing the effect of household electrical load, imported electricity price, exported electricity tariff and wind speed have also been conducted. From these studies it is seen that the most effective way to improve the financial performance of all systems is to offer a higher exported electricity tariff; installing a mono/hybrid system containing a micro-wind turbine in a location with a good wind resource can also have a significant effect.  相似文献   

12.
Solar photovoltaic (PV) energy is becoming an increasingly important part of the world’s renewable energy. A grid-connected solar PV system consists of solar cells for energy extraction from the sun and power converters for grid interface. In order for effective integration of the solar PV systems with the electric power grid, this paper presents solar PV energy extraction and conversion study by combining the two characteristics together to examine various factors that may affect the design of solar PV systems. The energy extraction characteristics of solar PV cells are examined by considering several practical issues such as series and parallel connections, change of temperatures and irradiance levels, shading of sunlight, and bypassing and blocking diodes. The electrical characteristics of power converters are studied by considering physical system constraints such as rated current and converter linear modulation limits. Then, the two characteristics are analyzed in a joint environment. An open-loop transient simulation using SimPowerSystem is developed to validate the effectiveness of the characteristic study and to further inspect the solar PV system behavior in a transient environment. Extensive simulation study is conducted to investigate performance of solar PV arrays under different conditions.  相似文献   

13.
The performance of solar photovoltaic-thermoelectric generation hybrid system (PV-TGS) and solar photovoltaic-thermoelectric cooling hybrid system (PV-TCS) under different conditions were theoretically analysed and compared. To test the practicality of these two hybrid systems, the performance of stand-alone PV system was also studied. The results show that PV-TGS and PV-TCS in most cases will result in the system with a better performance than stand-alone PV system. The advantage of PV-TGS is emphasised in total output power and conversion efficiency which is even poorer in PV-TCS than that in stand-alone PV system at the ambient wind speed uw being below 3 m/s. However, PV-TCS has obvious advantage on lowering the temperature of PV cell. There is an obvious increase in tendency on the performance of PV-TGS and PV-TCS when the cooling capacity of two hybrid systems varies from around 0.06 to 0.3?W/K. And it is also proved that not just a-Si in PV-TGS can produce a better performance than the stand-alone PV system alone at most cases.  相似文献   

14.
太阳能光伏发电预报网站系统设计与实现   总被引:1,自引:0,他引:1  
徐静  陈正洪  唐俊  李芬  成驰 《水电能源科学》2011,29(12):193-195,216
基于中尺度数值预报模式,以原理预报法、动力—统计预报法等太阳能光伏发电量预报方法为理论基础,构建了太阳能光伏发电预报系统,并根据太阳能发电预报的产品显示需求,设计了太阳能光伏发电预报网站的总体功能,基于ASP.Net 4.0和Silverlight 4.0技术开发了太阳能光伏发电预报网.预报结果在预报员确认后经网站采用不需要终端用户部署的B/S模式展示和分发.  相似文献   

15.
针对p型PERC单面单晶硅光伏组件和n型双面单晶硅光伏组件,利用光伏组件户外实证测试系统,分析了2016年12月15日~2018年7月20日期间,上海市嘉定区某屋顶的地面采用白板背景时双面和单面组件,以及水泥背景时双面组件的等效发电时长,并对白板背景和水泥背景时双面组件较单面组件的发电量增益情况进行了分析;计算了组件的PR值;分析了阴天和晴天时组件最大输出功率与组件背板温度、太阳辐照度和环境温度的关系;最后对比了单面和双面组件运行13个月后的衰减值。该实证结果为单面和双面组件的户外实证发电性能提供了数据支撑,并对双面组件较单面组件的发电量增益情况进行了有效证明。  相似文献   

16.
In life cycle assessment (LCA) of solar PV systems, energy pay back time (EPBT) is the commonly used indicator to justify its primary energy use. However, EPBT is a function of competing energy sources with which electricity from solar PV is compared, and amount of electricity generated from the solar PV system which varies with local irradiation and ambient conditions. Therefore, it is more appropriate to use site-specific EPBT for major decision-making in power generation planning. LCA and life cycle cost analysis are performed for a distributed 2.7 kWp grid-connected mono-crystalline solar PV system operating in Singapore. This paper presents various EPBT analyses of the solar PV system with reference to a fuel oil-fired steam turbine and their greenhouse gas (GHG) emissions and costs are also compared. The study reveals that GHG emission from electricity generation from the solar PV system is less than one-fourth that from an oil-fired steam turbine plant and one-half that from a gas-fired combined cycle plant. However, the cost of electricity is about five to seven times higher than that from the oil or gas fired power plant. The environmental uncertainties of the solar PV system are also critically reviewed and presented.  相似文献   

17.
Electric energy production with photovoltaic (PV)/thermal solar hybrid systems can be enhanced with the employment of a bifacial PV module. Experimental model of a PV/thermal hybrid system with such a module was constructed and studied. To make use of both active surfaces of the bifacial PV module, we designed and made an original water-heating planar collector and a set of reflecting planes. The heat collector was transparent in the visible and near-infrared spectral regions, which makes it compatible with the PV module made of crystalline Si. The estimated overall solar energy utilization efficiency for the system related to the direct radiation flux is of the order of 60%, with an electric efficiency of 16.4%.  相似文献   

18.
Large-scale photovoltaic electric power generation deployment and utilization is no longer dictated by limitations in technology, but rather by the economics of PV systems vs. other renewable or traditional options. This paper describes a near-term alternative option for cost-effective solar electric power generation based on a novel sunlight concentrating technology: integrated high-concentration PV(IHCPV). The advantages of high-concentration systems have been well analyzed, but development was constrained by the lack of solar cell capable of withstanding the rigors of concentrated sunlight. The development of a stable, high-concentration back-junction, point-contact cell, by Amonix, paved the way for high-concentration system development. System designers had to insure that the cost savings inherent in concentration systems through the reduction of costly solar cell content were not over-shadowed by the ancillary costs of structure and tracking elements used in concentrating arrays. The IHCPV system has met these goals. Economic factors specific to the IHCPV system are presented including (1) low cost of entry, (2) enhanced energy production, (3) reduced and utilization, and (4) accelerated benefits of volume production.  相似文献   

19.
There is a constant growth in energy consumption and consequently energy generation around the world. During the recent decades, renewable energy sources took heed of scientists and policy makers as a remedy for substituting traditional sources. Wind and photovoltaic (PV) are the least reliable sources because of their dependence on wind speed and irradiance and therefore their intermittent nature. Energy storage systems are usually coupled with these sources to increase the reliability of the hybrid system. Environmental effects are one of the biggest concerns associated with the renewable energy sources. This study summarizes the last and most important environmental and economic analysis of a grid‐connected hybrid network consisting of wind turbine, PV panels, and energy storage systems. Focusing on environmental aspects, this paper reviews land efficiency, shaded analysis of wind turbines and PV panels, greenhouse gas emission, wastes of wind turbine and PV panels' components, fossil fuel consumption, wildlife, sensitive ecosystems, health benefits, and so on. A cost analysis of the energy generated by a hybrid system has been discussed. Furthermore, this study reviews the latest technologies for materials that have been used for solar PV manufacturing. This paper can help to make a right decision considering all aspects of installing a hybrid system. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

20.
文章利用TRNSYS动态模拟软件研究了在我国不同建筑气候带条件下,不同类型的太阳能PV/T集热系统和普通太阳能PT集热系统的各项性能.其中,太阳能PV/T集热系统分为基于普通玻璃型太阳能PV/T集热系统和基于Low-e型太阳能PV/T集热系统.文章探究了基于普通玻璃型太阳能PV/T集热系统和基于Low-e型太阳能PV/...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号