共查询到20条相似文献,搜索用时 0 毫秒
1.
A standard ISO Life Cycle Assessment study was carried out to evaluate the environmental sustainability of electricity production from an anaerobic digestion (AD) plant using a mixture of dedicated energy crops, agricultural residues and livestock effluents as input materials. The functional unit was 1 MJ of electricity. System boundaries were from cradle to grave and covered all the phases from energy crops cultivation to the production of biogas and its use in a Combined Heat and Power plant to produce electricity. Liquid and solid digestate storage and spreading on agricultural land were included. Primary data were collected from the AD plant for all the above phases. Since heat produced is used only internally, no allocation was applied in the study. As regards digestate management, CH4 emissions were calculated from literature, whereas four literature methods were applied for calculation of nitrogen emissions with the goal to perform a sensitivity analysis on LCA results. ILCD Handbook impact assessment methodologies were used. Results show that the main hotspots are energy crops cultivation and the management of digestate, mainly because of both nitrogen and methane emissions, affecting Global Warming, Acidification, Marine and Freshwater Eutrophication. Finally, a detailed Monte Carlo analysis, was carried out to evaluate the results uncertainty. The study represents the state of the art about the environmental performance of the AD plant with the use of sensitivity and uncertainty analysis, which both improve the reliability of results, and allows drawing general conclusions on how to mitigate the environmental impacts of AD process. 相似文献
2.
This study is focused on identifying the candidature of timothy grass as an energy crop for hydrogen-rich syngas production through supercritical water gasification. Timothy grass was gasified in supercritical water to investigate the impacts of temperature (450–650 °C), biomass-to-water ratio (1:4 and 1:8) and reaction time (15–45 min) in the pressure range of 23–25 MPa. The impacts of carbonate catalysts (e.g., Na2CO3 and K2CO3) and hydroxide catalysts (e.g., NaOH and KOH) at variable mass fractions (1–3%) were examined to maximize hydrogen yields. In the non-catalytic gasification of timothy grass, highest hydrogen (5.15 mol kg−1) and total gas yields (17.2 mol kg−1) with greater carbon gasification efficiency (33%) and lower heating value (2.21 MJ m−3) of the gas products were obtained at 650 °C with 1:8 biomass-to-water ratio for 45 min. However, KOH at 3% mass fraction maximized hydrogen and total gas yields up to 8.91 and 30.6 mol kg−1, respectively. Nevertheless, NaOH demonstrated highest carbon gasification efficiency (61.3%) and enhanced lower heating value of the gas products (4.68 MJ m−3). Timothy grass biochars were characterized through Fourier transform infrared spectroscopy, Raman spectroscopy and scanning electron microscopy to understand the behavior of the feedstock to rising temperature and reaction time. The overall findings suggest that timothy grass is a promising feedstock for hydrogen production via supercritical water gasification. 相似文献
3.
The utilization of different chemical constituents of corn silage during industrial-scale anaerobic digestion was determined. Corn silage together with the resulting solid digestate generated during biogas production were collected from an industrial plant during a regular operating period. Moisture, water and ethanol extractives, ash, total nitrogen, starch, cellulose, the monomeric composition of hemicellulose, acid soluble and acid insoluble lignin were measured in both corn silage and corn silage solid digestate. The relative consumption of each component of corn silage during its anaerobic digestion was estimated with reference to acid insoluble lignin. It was assumed that lignin was not digested throughout the process. Starch and large fractions of extractives and acid soluble lignin were digested. In contrast, the digestion of cellulose and particularly hemicellulose were limited (40% and 29% respectively). Of the hemicellulose monomers, xylose was the least digested (20%). The present work shows that the digestate produced by commercial corn-silage anaerobic digestion contains a notable quantity of cell wall polymers. These could potentially be used in biorefinery processes, e.g. ethanol and xylo-oligosaccharide production. 相似文献
4.
《Applied Thermal Engineering》2014,62(2):500-506
Absorption heat transformer (AHT) and flash evaporator (FE) are used to reduce the heat consumption of CO2 capture processes and an AHT–FE-aided capture system is proposed. Analyses are carried out to verify the effectiveness in reducing heat consumption. Compared with the base CO2 capture system of 3000 t/d CO2 capture capacity from a 660 MW coal-fired power unit, the AHT–FE-aided capture system reduces the heat consumption from 3.873 GJ/tCO2 to 3.772 GJ/tCO2, and the corresponding energy saving is 2.62%. The economic analysis shows that the annual profit would be 2.94 million RMB Yuan. The payback period of the AHT–FE-aided capture system is approximately 2.4 years. Therefore, the AHT–FE-aided capture system is both economically and technically feasible for improving the CO2 capture energy performance. 相似文献
5.
Research is focused on the utilisation of waste or residue biomass for bioenergy conversion. A promising conversion technology for the production of liquid biofuels from residue biomass is a process called Thermo-Catalytic Reforming (TCR®) which is a combination of prior thermal treatment of the biomass at mild temperatures (intermediate pyrolysis) followed by a second catalytic treatment step at elevated temperatures (reforming). This article focuses on the conversion of TCR® liquids from digestate as a feedstock for subsequent hydrocarbon production. The generated bio-oil showed a lower heating value of 34.0 MJ kg−1 with an oxygen content of 7.0% and a water content of 2.2%. The bio-oil was hydrodeoxygenated using an industrial NiMo–Al2O3 catalyst at temperatures of 503 K–643 K and a pressure of 14 MPa. The hydrodeoxygenated bio-oil reached a lower heating value of 42.3 MJ kg−1 with an oxygen content below 0.8 mg kg−1 and water content of 30 ppm. Product yields and catalyst life give confidence that upgrading of the TCR® bio-oil offers a suitable option to meet the high standards of common fuels. 相似文献
6.
The aim of this research it is to show how the biogas biomethanisation from primary and secondary treatment of activated sludge from a wastewater treatment plant (WWTP), can be an alternative renewable energy option from fossil fuels, which offers competitive advantages and points out new horizons for the use of this fuel. This will allow to achieve some important priorities of energy plans in EU countries: to reduce the organic matter deposited in landfills and CO2 emissions and to find viable solutions to minimize the environmental impact of sewage sludge (SS).This study analyses the biogas combustion and energy recovery processes from a thermodynamic, thermoeconomic and exergetic point of view.The results show that the boiler of the process is the main source of irreversibility and exergy destruction. Moreover, the energy and exergy economic value of exhaust gases from the combustion chamber, are significant and worthwhile to be exploited. For this reason, the present study explores the applicability and suitability of integrating a Stirling engine in such process. The study reveals that it is possible to create a small micro-cogeneration system which leads to sustainable waste management and energy savings in the treatment plant itself. 相似文献
7.
Pulp and paper industry primary sludge being largely composed of lignocellulosic fibres, it could be used as carbon source by bacteria having cellulolytic capability. The aim of this study was to evaluate the use of cellulose contained in this type of sludge for Clostridium thermocellum to produce ethanol, hydrogen and cellulases. In an ATCC 1191 medium containing 5 kg m−3 dry primary sludge from recycled paper mill, batch culture reached stationary phase after 2 days. All of the available cellulose was hydrolysed after 60 h of incubation, with a final pH of 5.83. Metabolites produced after 60 h of fermentation were acetate (8.50 mol m−3), ethanol (11.30 mol m−3), lactate (8.75 mol m−3), formate (0.27 mol m−3), hydrogen (11.20 mol m−3) and carbon dioxide (18.41 mol m−3). Cellulase activity was detected in the supernatant after 36 h, with a maximal activity of 0.25 U cm−3 at 72 h. Pulp and paper primary sludge appeared to be a readily usable substrate for C. thermocellum at this concentration, yielding both potential biofuels (hydrogen and ethanol) as well as active cellulases. 相似文献
8.
In the present paper the functionality of the Semisubmersible wind energy and Flap-type wave energy Converter (SFC) is examined experimentally. In order to study the functionality of the SFC, the focus is on operational environmental conditions. SFC is a combined concept that utilizes offshore wind energy and ocean wave energy for power production. Details are presented as far as the physical modelling of the wind turbine with the use of a redesigned small-scale rotor and of the Power Take-Off mechanism of the Wave Energy Converters (WECs) with the use of a configuration that is based on a mechanical rotary damper. Tests with quasi-static excitation, motion decay, regular and irregular waves without and with wind that is uniform are conducted on an 1:50 scale physical model. The experimental data are compared with numerical predictions obtained by a fully coupled numerical model using Simo/Riflex tool. A good agreement is observed between experimental and numerical predictions. The combined operation of WECs doesn't affect the tension of mooring lines nor the acceleration of nacelle and the bending moment in tower's base. The produced power of the WECs of the SFC and consequently the functionality of the SFC is estimated. 相似文献
9.
Cities around the world generate substantial quantities of municipal solid waste, including organic residues. These organic residues can be managed productively and given value, or they can simply be wasted. Municipal solid waste management is a serious environmental and public health concern in developing countries. In addition, collecting, transporting and disposing of municipal solid wastes presents formidable challenges to many developing country cities. It is believed that the problems are likely to become even more pronounced as the level and pace of urbanization continue to grow rapidly. Moreover, cost recovery is a serious problem of municipal solid waste management in many cities in the developing world. This paper considers how anaerobic digestion can give value to organic residues and help reduce the problem of municipal waste management. Biogas technology has the potential to work for the growing urban populations of Africa as both an energy source and a waste management (minimization) tool that can be utilized both at a small or large scale. In this paper we review the potential roles of biogas in urban applications. Specifically, we review organic waste treatment methods as well as opportunities and challenges for urban application of biogas installations and identify the critical conditions for success of biogas in urban applications. 相似文献
10.
In the latest years the wind energy sector experienced an exponential growth all over the world. What started as a deployment of onshore projects, soon moved to offshore and, more recently to the urban environment within the context of smart cities and renewable micro-generation. However, urban wind projects using micro turbines do not have enough profit margins to enable the setup of comprehensive and expensive measurement campaigns, a standard procedure for the deployment of large wind parks. To respond to the wind assessment needs of the future smart cities a new and simple methodology for urban wind resource assessment was developed. This methodology is based on the construction of a surface involving a built area in order to estimate the wind potential by treating it as very complex orography. This is a straightforward methodology that allows estimating the sustainable urban wind potential, being suitable to map the urban wind resource in large areas. The methodology was applied to a case study and the results enabled the wind potential assessment of a large urban area being consistent with experimental data obtained in the case study area, with maximum deviations of the order of 10% (mean wind speed) and 20% (power density). 相似文献
11.
Biochemical conversion of lignocellulose to fermentable carbohydrates for ethanol production is now being implemented in large-scale industrial production. Applying hydrothermal pretreatment and enzymatic hydrolysis for the conversion process, a residue containing substantial amounts of lignin will be generated. So far little is known about the composition of this lignin residue which at present is mainly incinerated for heat and power generation and not yet converted so much into more valuable products.In this study, the structural and chemical composition of the solid and liquid fractions of lignin residue from wheat straw were analysed and processing factors discussed. Roughly 70 and 15% of the solid mass fraction consisted of lignin and ash, respectively. Residual carbohydrates mostly originated from hemicellulose in the liquid fraction and from cellulose in the solid fraction. The solid fraction also contained significant amounts of protein, which is a valuable by-product when used as animal feed or when enzymes and yeast cells are separated for process recycling. Silica was the dominant constituent in the mineral fraction and except for few fragments of lignified middle lamellae most particles in the solid fraction appeared as silica coated by lignin, hampering separation of the two components before incineration or refinement of the residue. 相似文献
12.
The objective was to determine the breakeven price for switchgrass (SG) (Panicum virgatum L.), a mix of big bluestem (Andropogon gerardii Vitman) and Indiangrass (BBIG) (Sorghastrum nutans L. Nash), and a combination of SG and BBIG (SG/BBIG) produced under three harvest treatments. Two-harvest treatments included a forage harvest at early boot (EB) and at early seedhead (ESH) plus a biomass harvest at fall dormancy (FD). The third harvest treatment was a single biomass harvest at FD. Mixed models were used to determine if there were differences in yield, crude protein, and nutrient removal for each of the native warm-season grass (NWSG) treatments at each harvest. The EB plus FD harvest system would be preferred over the ESH plus FD harvest system for all NWSG treatments. BBIG was the only NWSG treatment with a breakeven price for biomass that decreased with an EB harvest. For all three NWSG treatments, a producer would be better off harvesting once a year for biomass than twice for forage and biomass. The cost of harvesting and replacing the nutrients for the forage harvest was greater than the revenue received from selling the forage. 相似文献
13.
Wheat straw is an abundant, cheap substrate that can be used for methane production. However, the nutrient content in straw is inadequate for methane fermentation. In this study, recycling digestate liquor was implemented in single-stage continuous stirred tank processes for enrichment of the nutrient content of straw with the aim of improving the methane production. The VS-based organic loading rate was set at 2 g/(L d) and the solid retention time at 40 days. When wheat straw alone was used as the substrate, the methane yields achieved with digestate liquor recycling was on average 240 ml CH4/g VS giving a 21% improvement over the processes without recycling. However, over time, the processes suffered from declining methane yields and poor stability evidenced by low pH. To maintain process stability, wheat straw was co-digested with sewage sludge or supplemented with macronutrients (nitrogen and phosphorous). As a result, the processes with digestate liquor recycling could be operated stably, achieving methane yields ranging from 288 to 296 ml CH4/g VS. Besides, the processes could not be operated sturdily with supplementation of macronutrients without digestate liquor recycling. The highest methane yield (296 ± 16 ml CH4/g VS) was achieved by co-digestion with sewage sludge plus recycling of digestate liquor after filtration (retention of nutrients and microorganisms). This was comparable to the maximum expected methane yield of 293 ± 13 ml CH4/g VS achieved in batch test. The present study therefore demonstrated that digestate liquor recycling could lead to a decreased dilution of vital nutrients from the reactors thereby rendering high process performance and stability. 相似文献
14.
The European Union relies largely on bioenergy to achieve its climate and energy targets for 2020 and beyond.We assess, using Attributional Life Cycle Assessment (A-LCA), the climate change mitigation potential of three bioenergy power plants fuelled by residual biomass compared to a fossil system based on the European power generation mix. We study forest residues, cereal straws and cattle slurry.Our A-LCA methodology includes: i) supply chains and biogenic-CO2 flows; ii) explicit treatment of time of emissions; iii) instantaneous and time-integrated climate metrics.Power generation from cereal straws and cattle slurry can provide significant global warming mitigation by 2100 compared to current European electricity mix in all of the conditions considered.The mitigation potential of forest residues depends on the decay rate considered. Power generation from forest logging residues is an effective mitigation solution compared to the current EU mix only in conditions of decay rates above 5.2% a−1. Even with faster-decomposing feedstocks, bioenergy temporarily causes a STR(i) and STR(c) higher than the fossil system.The mitigation potential of bioenergy technologies is overestimated when biogenic-CO2 flows are excluded. Results based solely on supply-chain emissions can only be interpreted as an estimation of the long-term (>100 years) mitigation potential of bioenergy systems interrupted at the end of the lifetime of the plant and whose carbon stock is allowed to accumulate back.Strategies for bioenergy deployment should take into account possible increases in global warming rate and possible temporary increases in temperature anomaly as well as of cumulative radiative forcing. 相似文献
15.
This paper reviews developments in the direct-fired biomass power sector and provides an up to date investment outlook by calculating the Net Present Value of new investments, and the appropriate level of Feed-in-Tariff needed to stimulate future investment. An overview is provided of support policies, historical growth in installations, and main market players. A number of data sources is combined to build a database with detailed information of individual biopower projects. This data is used to describe technological and market trends, which are used in a cash flow model to calculate the NPV of a typical project. The NPV for new projects is estimated to be negative, and investment should be expected to stall without proper policy intervention. Increasing fuel prices, local competition over biomass fuel resources, lower than expected operational performance and a downturn in carbon markets have deteriorated the investment outlook. In order to ensure reasonable profitability, the Feed-In-Tariff should be increased, from the current level of 90.9 € MWh−1, to between 97 and 105 € MWh−1. Where possible, government organizations should help organize demand for the supply of heat. Local rural energy bureaus may help organize supply networks for biomass fuels throughout the country, in order to reduce seasonal and local fuel scarcity and price fluctuations. 相似文献
16.
Storage and handling are important facets of biomass logistics because there are associated costs and biomass properties can change significantly as material proceeds through the supply chain. Thus, this aspect of biomass supply systems requires continued study. Shrub willow chips were harvested, and used to create six piles that each contained between 10 and 22 Mg (fresh biomass). Material was monitored for several months in temporary storage to assess changes in biomass quality (moisture, ash and energy content). Internal pile temperatures increased due to biological activity and conditions within a pile quickly differentiated based on location (shell, core, top, and side). Mean moisture content increased from 42 to 47% (mass fraction) between harvest and delivery of the chips, but ranged between 37 and over 60% over the next three months depending on pile location with the shell generally drier than the core. Mean ash content increased 1 to 2% points (mass fraction) between harvesting, reloading and delivery to the trial location, but became more variable during storage. Higher heating values (HHV) were stable between 18.6 and 19.0 MJ kg−1 over the six months, but lower heating values (LHV) ranged between 8.6 and 11.7 MJ kg−1 and mirrored changes in moisture content. There was minimal change in chip quality over two months, but quality became more variable over longer time periods. This period could be extended, and negative effects on chip quality could be mitigated, by improving storage methods, blending different types of chips, or employing pretreatments. 相似文献
17.
Three ligno-cellulosic substrates representing varying levels of biodegradability (giant reed, GR; fibre sorghum, FS; barley straw, BS) were combined with mild alkaline pre-treatments (NaOH 0.05, 0.10 and 0.15 N at 25 °C for 24 h) plus untreated controls, to study pre-treatment effects on physical-chemical structure, anaerobic digestibility and methane output of the three substrates. In a batch anaerobic digestion (AD) assay (58 days; 35 °C; 4 g VS l−1), the most recalcitrant substrate (GR) staged the highest increase in cumulative methane yield: +30% with NaOH 0.15 N over 190 ml CH4 g−1 VS in untreated GR. Conversely, the least recalcitrant substrate (FS) exhibited the lowest gain (+10% over 248 ml CH4 g−1 VS), while an intermediate behaviour was shown by BS (+15% over 232 ml CH4 g−1 VS). Pre-treatments speeded AD kinetics and reduced technical digestion time (i.e., the time needed to achieve 80% methane potential), which are the premises for increased production capacity of full scale AD plants. Fibre components (cellulose, hemicellulose and acid insoluble lignin determined after acid hydrolysis) and substrate structure (Fourier transform infra-red spectroscopy and scanning electron microscopy) outlined reductions of the three fibre components after pre-treatments, supporting claims of loosened binding of lignin with cellulose and hemicellulose. Hence, mild alkaline pre-treatments were shown to improve the biodegradability of ligno-cellulosic substrates to an extent proportional to their recalcitrance. In turn, this contributes to mitigate the food vs. fuel controversy raised by the use of whole plant cereals (namely, maize) as feedstocks for biogas production. 相似文献
18.
Pretreatments are crucial to achieve efficient conversion of lignocellulosic biomass to soluble sugars. In this light, switchgrass was subjected to 13 pretreatments including steam explosion alone (195 °C for 5, 10 and 15 min) and after impregnation with the following catalysts: Ca(OH)2 at low (0.4%) and high (0.7%) concentration; Ca(OH)2 at high concentration and higher temperature (205 °C for 5, 10 and 15 min); H2SO4 (0.2% at 195 °C for 10 min) as reference acid catalyst before steam explosion. Enzymatic hydrolysis was carried out to assess pretreatment efficiency in both solid and liquid fraction. Thereafter, in selected pretreatments the solid fraction was subjected to simultaneous saccharification and fermentation (SSF), while the liquid fraction underwent anaerobic digestion (AD). Lignin removal was lowest (12%) and highest (35%) with steam alone and 0.7% lime, respectively. In general, higher cellulose degradation and lower hemicellulose hydrolysis were observed in this study compared to others, depending on lower biomass hydration during steam explosion. Mild lime addition (0.4% at 195 °C) enhanced ethanol in SSF (+28% than steam alone), while H2SO4 boosted methane in AD (+110%). However, methane represented a lesser component in combined energy yield (ethanol, methane and energy content of residual solid). Mild lime addition was also shown less aggressive and secured more residual solid after SSF, resulting in higher energy yield per unit raw biomass. Decreased water consumption, avoidance of toxic compounds in downstream effluents, and post process recovery of Ca(OH)2 as CaCO3 represent further advantages of pretreatments involving mild lime addition before steam explosion. 相似文献
19.
Waste wood represents as much a waste to dispose of as a secondary resource to exploit. Various studies have assessed the energy potential and/or climate impact of energy recovery from waste wood. This paper aims to assess the long-term potential of waste wood for energy production and greenhouse gas (GHG) emissions reduction in Switzerland. Material flow analysis (MFA) is applied for modelling the metabolism of wood and waste wood in the Swiss anthroposphere over one century. The energy and climate impacts are estimated for 32 scenarios which assume different forest harvesting variants and waste wood treatment options. The scenario analysis shows that waste wood treatment options are more beneficial in the long term in terms of energy production (by energy recovery from waste wood) and of GHG emission reduction than the increase in the quantities of waste wood generated in the future caused by the advocated strategies of increased forest harvesting. By using the Maximin criterion, the long-term optimal additional potential for energy recovery from waste wood is estimated at 2110 GWh/year of useful energy, which offers a reduction of 364 tonnes of CO2 equivalents per year. As prerequisites, the nominal installed capacity of the waste wood boilers needs to be raised and their efficiency and as well as those of incineration plants need to be increased. In addition, the sustainable potential of Swiss forests must be fully exploited. This study identifies various recommendations for the optimal exploitation of energy recovery from waste wood. 相似文献
20.
Fatty acid methyl esters (biodiesel) prepared from field pennycress and meadowfoam seed oils were blended with methyl esters from camelina, cottonseed, palm, and soybean oils in an effort to ameliorate technical deficiencies inherent to these biodiesel fuels. For instance, camelina, cottonseed, and soybean oil-derived biodiesels exhibited poor oxidative stabilities but satisfactory kinematic viscosities. Field pennycress and meadowfoam seed oil methyl esters yielded excellent cold flow properties but high kinematic viscosities. Thus, field pennycress and meadowfoam-derived biodiesel fuels were blended with the other biodiesels to simultaneously ameliorate cold flow, oxidative stability, and viscosity deficiencies inherent to the individual fuels. Highly linear correlations were noted between blend ratio and cold flow as well as viscosity after least squares statistical regression whereas a non-linear relationship was observed for oxidative stability. Equations generated from statistical regression were highly accurate at predicting KV, reasonably accurate for prediction of cold flow properties, and less accurate at predicting oxidative stability. In summary, complementary blending enhanced fuel properties such as cold flow, kinematic viscosity, and oxidative stability of biodiesel. 相似文献