首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We propose a non-contact temperature measurement method that combines the temperature dependence of transmittance below 600 °C and radiation thermometry above 600 °C. The combined method uses a polarization technique and the Brewster angle between air and a dielectric film such as SiO2 or Si3N4 grown on silicon wafers. A prominent feature of this method is that both measurements of transmittance and radiance are performed with the same geometrical arrangement.For a semitransparent wafer, the measurement of p-polarized transmittance at the wavelengths of 1.1, 1.2 and 1.3 μm enables temperature measurement in the range from room temperature to 600 °C. For an opaque wafer above 600 °C, the p-polarized radiation thermometry at the wavelength of 4.5 μm allows the temperature measurement without the emissivity problem. The combined method with the use of transmittance and radiance is valid in the entire temperature range irrespective of variations of film thickness and resistivity.  相似文献   

2.
A simplified technique using short term Fourier transform to reduce the errors in distributed temperature measurement with a Raman scattering based optical fiber sensor system is presented. The two main sources of errors are differential attenuation to anti-Stokes and Stokes signal by fiber and local change in Stokes due to change in temperature. The proposed technique compensates these errors and extracts correct temperature profile in spite of practical difficulties encountered in applying the theoretical concept. Moreover proposed technique is less complex, self-reliant, can tolerate variation in laser power, requires less dead zone and suits automation using embedded solution. Results of measurement carried out, using the system developed at RRCAT, Indore, for two hot zones having spatial width of 1.9 m (kept at 56 °C) and 1.5 m (kept at 78 °C), located at 47 m and 85 m respectively, show that these parameters can be recovered with significantly small errors.  相似文献   

3.
The back-propagation (BP) and generalized regression neural network models (GRNN) were investigated to predict the thin layer drying behavior in municipal sewage sludge during hot air forced convection. The accuracy of the BP model to predict the moisture content of the sewage sludge thin layer during hot air forced convective drying was far higher than that of the GRNN model. The GRNN models could automatically determine the best smoothing parameters, which were 0.6 and 0.3 for predicting the moisture content and average temperature, respectively. The model type for predicting the average temperature of the sewage sludge thin layer was selected for different sample groups by comparing their MSE values or R2 values. The GRNN model was suitable for predicting the average temperature corresponding to the sample groups at hot air velocity of 0.6 m/s, and drying temperatures of 100 °C, 160 °C; hot air velocity of 1.4 m/s, and drying temperatures of 130 °C, 140 °C; hot air velocity of 2.0 m/s, and drying temperatures of 150 °C, 160 °C. The average temperature for the other sample groups was best predicted by the BP model.  相似文献   

4.
Ultrasonic temperature measurement has the potential to improve measurement accuracy by increasing the length of a received signal due to its excellent performance with noise resistance. However, when the distance between the transmitter and receiver is limited, the received signal can be polluted by strong multiple echoes, which can significantly degrade temperature accuracy. This paper proposes a method for high-resolution ultrasonic temperature measurement. With the use of a maximum length sequence (MLS)-modulated continuous wave, the obstructive effect of echoes is effectively suppressed. A hybrid method is employed for accurate time-of-flight (TOF) estimation by incorporating both cross-correlation and phase shift (PS), which is the basis of highly accurate temperature measurement. The experimental results in distilled water show that the proposed method estimates TOF with a standard deviation of less than 0.3 ns, and temperature errors consistently remain within ±0.04 °C.  相似文献   

5.
We demonstrate a simultaneous distributed strain and temperature measurement technique with the spatial resolution of 1 mm using fiber Bragg gratings inscribed in a polarization-maintaining and absorption-reducing fiber (PANDA-FBGs) and optical frequency domain reflectometry (OFDR). We conduct four-point bending tests in an environmental chamber. Using high birefringent PANDA-FBGs that are manufactured specifically for the simultaneous measurements, the uniform temperature distributions and the typical strain distribution profiles of the four-point bending tests were successfully obtained. The measurement errors of strain were from −31 με to 19 με, and of temperature were from −0.9 °C to 1.3 °C. The spatial standard deviation was 7.5 με and 0.9 °C. We also discussed the effect of the residual strain of the sensor-bonding procedures and the data averaging.  相似文献   

6.
This article investigates a kind of method to measure the wind speed and the wind direction, which is based on arc ultrasonic sensor array and combined with array signal processing algorithm. In the proposed method, a new arc ultrasonic array structure is introduced and the array manifold is derived firstly. On this basis, the measurement of the wind speed and the wind direction is analyzed and discussed by means of the basic idea of the classic MUSIC (Multiple Signal Classification) algorithm, which achieves the measurements of the 360° wind direction with resolution of 1° and 0–60 m/s wind speed with resolution of 0.1 m/s. The implementation of the proposed method is elaborated through the theoretical derivation and corresponding discussion. Besides, the simulation experiments are presented to show the feasibility of the proposed method. The theoretical analysis and simulation results indicate that the proposed method has superiority on anti-noise performance and improves the wind measurement accuracy.  相似文献   

7.
The temperature dependence of the solid particle erosion of polydimethylsiloxane (PDMS) using aluminum oxide particles was investigated between the temperatures of ?178 and 17 °C for a variety of angles of attack using a novel cryogenic abrasive jet machining apparatus. It was found that the most efficient machining of PDMS (volume removed per kinetic energy of erodent) occurred at approximately ?178 °C, at angles of attack between 30° and 60° from the surface. A previously developed surface evolution model was used to predict the size and shape of unmasked channels at various temperatures. A good agreement between the predicted and measured channel profiles was obtained when the average blasting temperature was between approximately ?127 and ?178 °C. At ?82 °C, the fit was poorer, probably because of an increase in particle embedding. Although it was demonstrated that PDMS could be machined at temperatures above its glass transition, the erosion rate increased by a factor of more than 10 when the machining temperature was below this point.  相似文献   

8.
Protective coatings, deposited mainly by thermal spraying and diffusion techniques, are considered a solution to extend the lifetime of many components in the energy production sector, such as heat exchangers. In this paper, some results are presented for uncoated, aluminized and chromized-aluminized 9Cr–1Mo steel, subjected to air and to impacts by 200 μm silica particles at angles of 30° and 90° and speeds of 7.0–9.2 m s?1 at 550 –700 °C, in a laboratory fluidized-bed rig, to determine whether or not aluminized and chromized-aluminized diffusion coatings could protect the steel under such conditions. Erosion-oxidation damage was characterized by measurement of the mean thickness changes using a micrometer and examination of worn surfaces by scanning electron microscopy.Under most conditions, the coatings provided some protection to the substrate: under 30° impacts, up to 650 °C, and under 90° impacts, at 700 °C, both coatings were effective, whereas under 90° impacts, up to 650 °C, only the chromized-aluminized coating gave significant protection. However, for 30° at 700 °C, the oxide scale on the substrate was protective and the coatings were not needed. Explanations for these observations are presented in this paper, in terms of interactions between the erosion and oxidation processes for the materials.  相似文献   

9.
Y.S. Mao  L. Wang  K.M. Chen  S.Q. Wang  X.H. Cui 《Wear》2013,297(1-2):1032-1039
Dry sliding wear tests were performed for Ti–6Al–4V alloy under a load of 50–250 N at 25–500 °C on a pin-on-disk elevated temperature tester. Worn surfaces and subsurfaces were thoroughly investigated for the morphology, composition and structure of tribo-layers. Ti–6Al–4V alloy could not be considered to possess poor wear resistance at all times, and presented a substantially higher wear resistance at 400–500 °C than at 25–200 °C. The tribo-layer, a mechanical mixing layer, was noticed to exist on worn surfaces under various conditions. High wear rate at 25–200 °C was ascribed to no protective tribo-layer containing no or trace tribo-oxides. As more oxides appeared in the tribo-layers, they presented an obviously protective role due to their high hardness, thus giving a reasonable explanation for high wear resistance of Ti–6Al–4V alloy at 400–500 °C.  相似文献   

10.
The design and development of an Abbe-compliant linear encoder-based measurement system for position measurement with a targeted 20 nm uncertainty (k = 2) in machine tools and CMMs is presented. It consists of a linear scale and a capacitive sensor, mounted in line on an interface which is guided in the scale's measurement direction and driven by a linear motor based on the output signal of the capacitive sensor. The capacitive sensor measures the displacement of a target surface on the workpiece table. The functional point, which is the center of a tool or touch probe, is always aligned with the scale and capacitive sensor such that this configuration is compliant with the Abbe principle. Thermal stability is achieved by the application of a thermal center between the scale and capacitive sensor at the tip of the latter, which prevents both components to drift apart. Based on this concept, a prototype of a one-DOF measurement system was developed for a measurement range of 120 mm, together with an experimental setup aimed at verifying the reproducibility of the system for changing ambient conditions of ±0.5 °C and ±5%rh and the repeatability during tracking of a target surface over a short period of time. These experiments have shown that the measurement uncertainty of the one-DOF system is below 29 nm with a 95% confidence level.  相似文献   

11.
《Wear》2006,260(9-10):919-932
The variation in wear behaviour during limited debris retention sliding wear of Nimonic 80A versus Stellite 6 (counterface) between room temperature and 750 °C, at sliding speeds of 0.314, 0.654 and 0.905 m s−1, was investigated. At 0.314 m s−1, mild oxidational wear was observed at all temperatures, due to transfer and oxidation of Stellite 6-sourced debris to the Nimonic 80A and resultant separation of the Nimonic 80A and Stellite 6 wear surfaces. Between room temperature and 450 °C, this debris mostly remained in the form of loose particles (with only limited compaction), whilst between 510 and 750 °C, the particles were compacted and sintered together to form a wear protective ‘glaze’ layer.At 0.654 and 0.905 m s−1, mild oxidational wear due to transfer and oxidation of Stellite 6-sourced debris was only observed at room temperature and 270 °C (also 390 °C at 0.654 m s−1). At 390 °C (450 °C at 0.654 m s−1) and above, this oxide was completely absent and ‘metal-to-metal’ contact resulted in an intermediate temperature severe wear regime—losses in the form of ejected metallic debris were sourced almost completely from the Nimonic 80A. Oxide debris, this time sourced from the Nimonic 80A sample, did not reappear until 570 °C (630 °C at 0.654 m s−1), however, were insufficient to eliminate completely severe wear until 690 and 750 °C. At both 0.654 and 0.905 m s−1, the oxide now preventing severe wear at 690 and 750 °C tended not to form ‘glaze’ layers on the surface of the Nimonic 80A and instead supported continued high wear by abrasion. This abrasive action was attributed to the poor sintering characteristics of the Nimonic 80A-sourced oxide, in combination with the oxides’ increased mobility and decreased residency.The collected data were used to compose a simple wear map detailing the effects of sliding speed and temperature on the wear of Nimonic 80A slid against Stellite 6, at these speeds and temperatures of between room temperature and 750 °C.  相似文献   

12.
We examined cutting point temperature and tool wear in driven rotary cutting. Cutting tests under dry and minimum-quantity-lubrication (MQL) conditions of stainless steel (SUS304) were carried out. Cutting point temperature was measured using a tool-work-thermocouple method at various cutting speeds. Cutting point temperature tends to increase with increased cutting speed. In driven rotary cutting, cutting point temperature was lower than that of non-rotation cutting. At high-speed cutting of 500 m/min, cutting point temperature was over 1200 °C in the non-rotation tool, but 1000 °C with driven rotary cutting. In addition, when driven rotary cutting was used with MQL, cutting point temperature was decreased to 900 °C. The magnitude of tool wear corresponded almost precisely to cutting point temperature. Severe adhesion on the rake face was observed and resulted in progressive wear on the rake face in rotary cutting at a cutting speed of 100 m/min. The appropriate cutting speed range passively shifts higher from the viewpoint of cutting temperature with rotary cutting.  相似文献   

13.
《Wear》2007,262(5-6):742-748
Tribological characteristics of ultra-high molecular weight polyethylene (UHMW-PE) disks molded at 130–190 °C were studied. The highest crystallinity was obtained for the sheet molded at 130 °C, but crystallinity decreased with increasing molding temperature. Beyond 150 °C, the resultant crystallinity reached a constant level. The dynamic friction coefficients of these UHMW-PE disks were measured using a ball-on-disk friction tester. The friction coefficient decreased with increasing number of rotations in the early stage of the measurement, and achieved at an equilibrium level, independent of the molding temperature. The steady-state friction coefficient was 0.04 for the disk molded at 130 °C and increased with increasing molding temperature. The disks molded at 150–190 °C always had a steady-state friction coefficient of 0.065. The surface deformation of each disk was evaluated from the observation of the resultant wear track. Analyzing the relationship between the above friction coefficient and width of the wear track enabled us to interpret the tribological mechanism generated in this study.  相似文献   

14.
The opposite-type ultrasonic ranging application is widely used in spatial 3D coordinates measurement systems. The traditional phase shift (PS) estimation based on multi-frequency ultrasonic pulse is a highly accurate ranging method but has high requirement to the transducers and signal processing algorithm. This paper proposes a novel opposite-type ultrasonic ranging method with single frequency pulse. It can estimate the time of flight (TOF) roughly through extracting the signal’s onset based on self-correlation and correct the TOF accurately through detecting the phase shift between the transmission and reception signals. In order to reduce the noise disturbance to this algorithm, a new de-noising method based on wavelet decomposition is presented, and the de-noising effect is analyzed by MATLAB simulation. Finally, three separate ultrasonic ranging experiments were designed to validate the effects of wavelet de-noising, PS detection and temperature field compensation. The accuracy of distance measurement can achieve 0.5 mm for the distance up to 5000 mm.  相似文献   

15.
Thickness of each medium layer and velocity of ultrasonic wave propagation in each medium layer of the two-layer composite medium were measured simultaneously based on the method to collect phase information from continuous echo signals on front surface and undersurface. Such measurement was implemented under no interface echo and fixed total thickness of the testpiece. The method can be applied to any two kinds of two-layer composite medium. The paper only used a 35 mm thick copper–steel composite board as an experimental example. Calculated results demonstrated that measuring errors of both thickness and velocity of ultrasonic wave propagation are smaller than 0.2%, indicating the effectiveness of the proposed measurement method.  相似文献   

16.
In the framework of the HiTeMS project of the European Metrology Research Pogramme (EMRP) a new multi-wavelength device for measurement of high temperatures in industrial applications was developed at INRIM. The apparatus takes advantage of the ultra-violet operation with working wavelengths from 350 nm up, which reduces the possible errors connected with the multi-wavelength approach. The instrument has been characterised in terms of optical and electronic behaviour and some laboratory trials were carried out to verify the reliability of the multi-wavelength approach. The true temperature of a blackbody source at 1300 °C with optical windows of unknown spectral transmittance interposed has been defined. By applying an approach that allows a result to be accepted when a threshold limit is reached, it was found that, when an acceptable result can be obtained, errors are comprised within less than 1% of the temperature of the source. Three others single-band thermometers, at 508 nm, 650 nm and an IR broadband 0.8–1.1 μm, were also used to the purpose of a comparison. It has been found that, when the multi-wavelength approach is applicable, it provides generally better or in few cases, at worst similar results of corrected single-wavelength thermometers.  相似文献   

17.
A gas pressure sensor based on an all-fiber Fabry-Pérot interferometer (FFPI) is reported. The sensing head consists of a small section of silica rod spliced with a large offset between two single-mode fibers. The silica rod is used only as mechanical support so that an air cavity can be formed between both SMF. It is shown that the FFPI sensor is sensitive to gas pressure variation and when submitted to different gaseous environments, namely carbon dioxide, nitrogen and oxygen – sensitivities of 6.2, 4.1 and 3.6 nm/MPa, respectively, were attained. The refractive index change on nitrogen environment by means of gas pressure variation was also determined and a sensitivity of 1526 nm/RIU was obtained. The response of the sensing device to temperature variations in air was also studied and a sensitivity of −14 pm/°C was attained.  相似文献   

18.
The effect of Al2O3 content on the mechanical and tribological properties of Ni–Cr alloy was investigated from room temperature to 1000 °C. The results indicated that NiCr–40 wt% Al2O3 composite exhibited good wear resistance and its compressive strength remained 540 MPa even at 1000 °C. The values obtained for flexural strength and fracture toughness at room temperature were 771 MPa, 15.2 MPa m1/2, respectively. Between 800 °C and 1000 °C, the adhesive and plastic oxide layer on the worn surface of the composite was claimed to be responsible for low friction coefficient and wear rate.  相似文献   

19.
In some applications, luminescence dating needs performing studies above 550 °C and conventional or commercial instruments are not always perfectly adapted to this temperature range. We describe here an automated instrument capable of thermoluminescence and optically stimulated luminescence measurements. Main mechanical and digital design is reported showing the technical options leading to both a low cost of fabrication and good high temperature performances. The mechanical design favors simply shaped parts and uses a 3D-CAD software that can drive a numerically controlled milling machine. Besides, electronics is limited to elementary signal conditioning (for photomultiplier and thermocouple) and the more complex functions (as thermal regulation) are performed with softwares running on a standard PC. A fully automated prototype instrument was built using these options. This confirmed the low cost of fabrication and the possibility of measurements up to 800 °C and of withstanding temperatures higher than 600 °C for several minutes.  相似文献   

20.
In this investigation, a self-developed signal processing method for Fabry–Perot interferometer is proposed which can be utilized for high-speed dynamic displacement measurements, e.g. mechanical vibration measurements. The lookup table (LUT) integrated with the interference intensity equation has been employed for the interpolation processing of interference signals. With the aid of this method, the interpolation error has been reduced by 40% in comparison with that resulting from the commercial sinusoidal signal processing module. By operations of Fast Fourier Transform (FFT), the displacement measurement distribution can be converted into the frequency spectrum diagram. The interpolation resolution of the proposed interferometric displacement measurement system is about 0.1 nm. Experimental results demonstrate that this interferometer system is available for measuring frequencies till 2 kHz where its corresponding amplitude is 0.15 μm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号