共查询到20条相似文献,搜索用时 109 毫秒
1.
The optimum conditions for lipids productivity and CO2 fixation of two freshwater strains, namely Chlorella sp. and Pseudochlorococcum sp. and a marine strain; namely Nannochlorpsis sp. have been determined in this work. The species were grown autotrophically under aeration with different CO2 concentrations, ranging from 0.04 to 2% (v/v). The growth was tested in nitrogen sufficient and deficient media at different salinities (0.49–680 mM) and temperatures of 27 and 31 °C. The optimum CO2 enrichment was found to be 1% (v/v) in both media. Nitrogen starvation resulted in an increase in lipid contents, but at lower growth rate, which resulted in a lower overall lipid productivity. The experimental data were used to determine the kinetic parameters of Haldane model. The Chlorella sp. grew well at salinity levels of up to 460 mM. The highest CO2 biofixation rate was observed when Chlorella sp. was grown at 27 °C in seawater (230 mM NaCl).Lipids were extracted from harvested marine strain, Nannochlorpsis sp., and enzymatically transesterified to produce biodiesel in supercritical CO2 (SC–CO2) medium. It was found that the conversion of biodiesel produced from microalgae lipids was 35% higher than that achieved using lamb fat in a similar system. 相似文献
2.
3.
In 2012 there was approximately 2400 electric vehicle DC Fast Charging stations sold globally. According to Pike Research (Jerram and Gartner, 2012), it is anticipated that by 2020 there will be approximately 460,000 of them installed worldwide. A typical public DC fast charger delivers a maximum power output of 50 kW which allows a typical passenger vehicle to be 80% charged in 10–15 min, compared with 6–8 h for a 6.6 kW AC level 2 charging unit. While DC fast chargers offer users the convenience of being able to rapidly charge their vehicle, the unit's high power demand has the potential to put sudden strain on the electricity network, and incur significant demand charges.Depending on the utility rate structure, a DC fast charger can experience annual demand charges of several thousand dollars. Therefore in these cases there is an opportunity to mitigate or even avoid the demand charges incurred by coupling the unit with an appropriately sized energy storage system and coordinating the way in which it integrates. This paper explores the technical and economical suitability of coupling a ground energy storage system with a DC fast charge unit for mitigation or avoidance of demand charges and lessening the impact on the local electricity network. This paper also discusses the concept of having the system participate in demand response programs in order to provide grid support and to further improve the economic suitability of an energy storage system. 相似文献
4.
Fatty acid methyl esters (biodiesel) prepared from field pennycress and meadowfoam seed oils were blended with methyl esters from camelina, cottonseed, palm, and soybean oils in an effort to ameliorate technical deficiencies inherent to these biodiesel fuels. For instance, camelina, cottonseed, and soybean oil-derived biodiesels exhibited poor oxidative stabilities but satisfactory kinematic viscosities. Field pennycress and meadowfoam seed oil methyl esters yielded excellent cold flow properties but high kinematic viscosities. Thus, field pennycress and meadowfoam-derived biodiesel fuels were blended with the other biodiesels to simultaneously ameliorate cold flow, oxidative stability, and viscosity deficiencies inherent to the individual fuels. Highly linear correlations were noted between blend ratio and cold flow as well as viscosity after least squares statistical regression whereas a non-linear relationship was observed for oxidative stability. Equations generated from statistical regression were highly accurate at predicting KV, reasonably accurate for prediction of cold flow properties, and less accurate at predicting oxidative stability. In summary, complementary blending enhanced fuel properties such as cold flow, kinematic viscosity, and oxidative stability of biodiesel. 相似文献
5.
Bioconversion production of ethanol from cellulosic feedstock is generally proposed to use direct fermentation of sugars to ethanol. Another potential route for ethanol production is fermentation of sugars to acetic acid followed by hydrogenation to convert the acetic acid into ethanol. The advantage of the acetogen pathway is an increased ethanol yield; however, using an acetogen requires the additional hydrogenation, which could substantially affect the life cycle global warming potential of the process. Assuming a poplar feedstock, a cradle to grave Life cycle assessment (LCA) is used to evaluate the environmental impacts of an acetogen based fermentation pathway. An LCA of a fermentation pathway that uses ethanologen fermentation is developed for comparison. It is found that the ethanologen and acetogen pathways have Global Warming Potentials (GWP) that are 92% and 46% lower than the GWP of gasoline, respectively. When the absolute GWP reduction compared to gasoline is calculated using a unit of land basis, the benefit of the higher ethanol yield using the acetogen is observed as the two pathways achieve similar GWP savings. The higher ethanol yield in the acetogen process plays a crucial role in choosing a lignocellulosic ethanol production method if land is a limited resource. 相似文献
6.
The objective was to determine the breakeven price for switchgrass (SG) (Panicum virgatum L.), a mix of big bluestem (Andropogon gerardii Vitman) and Indiangrass (BBIG) (Sorghastrum nutans L. Nash), and a combination of SG and BBIG (SG/BBIG) produced under three harvest treatments. Two-harvest treatments included a forage harvest at early boot (EB) and at early seedhead (ESH) plus a biomass harvest at fall dormancy (FD). The third harvest treatment was a single biomass harvest at FD. Mixed models were used to determine if there were differences in yield, crude protein, and nutrient removal for each of the native warm-season grass (NWSG) treatments at each harvest. The EB plus FD harvest system would be preferred over the ESH plus FD harvest system for all NWSG treatments. BBIG was the only NWSG treatment with a breakeven price for biomass that decreased with an EB harvest. For all three NWSG treatments, a producer would be better off harvesting once a year for biomass than twice for forage and biomass. The cost of harvesting and replacing the nutrients for the forage harvest was greater than the revenue received from selling the forage. 相似文献
7.
Macroalgae have not met their full potential to date as biomass for the production of energy. One reason is the high cost associated with the pretreatment which breaks the biomass's crystalline structure and better exposes the fermentable sugars to anaerobes. In the attempt to overcome this technological barrier, the performance of a Hollander beater mechanical pretreatment is assessed in this paper. This pretreatment has been applied to a batch of Laminariaceae biomass and inoculated with sludge from a wastewater treatment plant. The derived biogas and methane yields were used as the responses of a complex system in order to identify the optimal system input variables by using the response surface methodology (RSM). The system's inputs considered are the mechanical pretreatment time (5–15 min range), the machine's chopping gap (76–836 μm) and the mesophilic to thermophilic range of temperatures (30–50 °C). The mechanical pretreatment was carried out with the purpose of enhancing the biodegradability of the macroalgal feedstock by increasing the specific surface area available during the anaerobic co-digestion. The pretreatment effects on the two considered responses are estimated, discussed and optimized using the tools provided by the statistical software Design-Expert v.8. The best biogas yield of treated macroalgae was found at 50 °C after 10 min of treatment, providing 52% extra biogas and 53% extra methane yield when compared to untreated samples at the same temperature conditions. The highest biogas rate achieved by treating the biomass was 685 cc gTS−1, which is 430 cc gTS−1 in terms of CH4 yield. 相似文献
8.
Organic acids are envisaged as alternative catalysts to strong mineral acids, in pre-treatment of ligno-cellulosic biomass for anaerobic digestion (AD). To evaluate this hypothesis, an untreated control and four pre-treatments (25 °C for 24 h) involving two levels of maleic acid (34.8 and 69.6 kg m−3), alone and combined with sulphuric acid (4 kg m−3), were studied in three agricultural substrates: Arundo (aka giant reed), Barley straw and B133 fibre sorghum. Methane production was assessed in a batch AD assay (35 °C for 51 days) with 4 g L−1 of volatile solid (VS) load. Fibre composition and structure were investigated through chemical analysis and Fourier transform infrared (FTIR) spectrometry. Arundo and B133 that were the most and least recalcitrant substrate, respectively, staged the highest and lowest increase in methane with high maleic acid: +62% over 218 cm3 g−1 of VS in untreated Arundo; +36% over 284 cm3 g−1 of VS in untreated B133. Barley straw showed an intermediate behaviour (+41% over 269 cm3 g−1 of VS). H2SO4 addition to maleic acid did not improve CH4 output. The large increase in methane yield determined by pre-treatments was reflected in the concurrent decrease of fibre (between 14 and 39% depending on fibrous component). Based on FTIR spectra, bands assigned to hemicellulose and cellulose displayed lower absorbance after pre-treatment, supporting the hypothesis of solubilisation of structural carbohydrates and change in fibre structure. Hence, maleic acid was shown a suitable catalyst to improve biodegradability of ligno-cellulosic biomass, especially in recalcitrant substrates as Arundo. 相似文献
9.
In this paper a novel model based on a geographic information system (GIS) is presented for the assessment of sustainable crop residue potentials. The approach is applied to analyse the amount and the spatial distribution (1 km × 1 km grid cells) of cereal straw, root crop and oil plant residues for five European regions, considering spatially differentiated environmental sustainability issues, i.e. organic carbon content in topsoil, soil erodibility, and protected areas. The maximum sustainable residue potential varies strongly between the regions and residue types. In the scenarios Basis and Restrict, it accounts for 45–59% and 24–48% of the theoretical potential respectively without considering competing uses. Among the crop residues, cereal straw shows the highest energy potential in all regions under investigation. In terms of wet mass it accounts for 3.7 Mio. twet/a in North Rhine-Westphalia, 1.6 Mio. twet/a in Île-the-France, 1.2 Mio. twet/a in Wallonia, 0.9 Mio. twet/a in West Midlands, and 0.3 Mio. twet/a in South Netherlands (scenario Basis). Our survey shows that spatially differentiated potential estimations and the inclusion of crop residues other than cereal straw are urgently needed to improve the present rough estimations for crop residues which can be used in a sustainable way. The rather high spatial resolution of our analyses particularly allows for the support of regional stakeholders and prospective investors when it comes to questions of regional availability of biomass resources, transport distances to biomass conversion plants, and identification of suitable plant sites and sizes, respectively. 相似文献
10.
《Applied Thermal Engineering》2014,62(2):500-506
Absorption heat transformer (AHT) and flash evaporator (FE) are used to reduce the heat consumption of CO2 capture processes and an AHT–FE-aided capture system is proposed. Analyses are carried out to verify the effectiveness in reducing heat consumption. Compared with the base CO2 capture system of 3000 t/d CO2 capture capacity from a 660 MW coal-fired power unit, the AHT–FE-aided capture system reduces the heat consumption from 3.873 GJ/tCO2 to 3.772 GJ/tCO2, and the corresponding energy saving is 2.62%. The economic analysis shows that the annual profit would be 2.94 million RMB Yuan. The payback period of the AHT–FE-aided capture system is approximately 2.4 years. Therefore, the AHT–FE-aided capture system is both economically and technically feasible for improving the CO2 capture energy performance. 相似文献
11.
The utilization of different chemical constituents of corn silage during industrial-scale anaerobic digestion was determined. Corn silage together with the resulting solid digestate generated during biogas production were collected from an industrial plant during a regular operating period. Moisture, water and ethanol extractives, ash, total nitrogen, starch, cellulose, the monomeric composition of hemicellulose, acid soluble and acid insoluble lignin were measured in both corn silage and corn silage solid digestate. The relative consumption of each component of corn silage during its anaerobic digestion was estimated with reference to acid insoluble lignin. It was assumed that lignin was not digested throughout the process. Starch and large fractions of extractives and acid soluble lignin were digested. In contrast, the digestion of cellulose and particularly hemicellulose were limited (40% and 29% respectively). Of the hemicellulose monomers, xylose was the least digested (20%). The present work shows that the digestate produced by commercial corn-silage anaerobic digestion contains a notable quantity of cell wall polymers. These could potentially be used in biorefinery processes, e.g. ethanol and xylo-oligosaccharide production. 相似文献
12.
β-caryophyllene is a common sesquiterpene compound currently being studied as a promising precursor for the production of high-density fuels. Acute demand for high-density fuels has provided the impetus to pursue biosynthetic methods to produce β-caryophyllene from reproducible sources. In this study, we produced β-caryophyllene by assembling a biosynthetic pathway in an engineered Escherichia coli strain of which phosphoglucose isomerase gene has been deleted. The 1- deoxy-d-xylulose 5-phosphate (DXP) or heterologous mevalonate (MVA) pathways were employed. Meanwhile, geranyl diphosphate synthase, glucose-6-phosphate dehydrogenase and β-caryophyllene synthase genes were co-overexpressed in the above strain. The final genetically modified strain, YJM59, produced 220 ± 6 mg/L of β-caryophyllene in flask culture. We also evaluated the use of fed-batch fermentation for the production of β-caryophyllene. After induction for 60 h, the YJM59 strain produced β-caryophyllene at a concentration of 1520 mg/L. The volumetric production fermented in the aerobic fed-batch was 0.34 mg/(L·h·OD600) and the conversion efficiency of glucose to β-caryophyllene (gram to gram) was 1.69%. Our results are the first successful attempt to produce β-caryophyllene using E. coli BL21(DE3), and provide a new strategy that is green and sustainable for the production of β-caryophyllene. 相似文献
13.
The Flemish renewable electricity support system has struggled to address a number of problematic issues in the past. These included excessive profit margins and general malfunctioning of the green certificate market, as well as a lack of qualification of various existing renewable energy technologies. The Flemish government responded to these issues by introducing major reforms in 2013, including “banding” to differentiate the support for various technologies. However, reliable methods for differentiating renewable electricity technologies and calculating support levels have not been sufficiently developed. The main objective of the 2013 reforms was to reduce support costs, but application of German feed-in tariffs on 18 reference technologies has shown that most projects in Flanders continue to receive high levels of support. The 2013 reforms did not succeed in addressing malfunctioning of the green certificate market. On the contrary, the confidence of investors in renewable electricity plants has decreased as the terms of support can be altered retroactively by adjusting remuneration levels and through political interventions. Future adaptations are likely to be made which will further decrease the overall stability and effectiveness of the system. 相似文献
14.
Four accessions of cultivated sunflower (Helianthus annuus) and silverleaf sunflower (Helianthus argophyllus), were each grown in three locations (Georgia, British Columbia, and Iowa) at different planting densities and phenotyped for biomass-related traits and wood biochemistry. In most environments, H. argophyllus produced significantly more biomass than H. annuus. Cell wall chemistry for a subset of plants grown in Georgia and Iowa was assessed using analytical wet chemistry methods to measure lignin and sugar content/composition. The analysis of lignin and the S/G-lignin ratios for a larger number of samples (n > 250) was also assessed by high-throughput pyrolysis Molecular Beam Mass Spectrometry. Average pyMBMS estimated lignin content (i.e., dry weight fraction) for 60 °C dried basal stem samples of H. annuus and H. argophyllus was 29.6% (range, 24.0%–34.6%) and 28.6% (range, 24.6%–33.3%), respectively when averaged across all environments. The average S/G lignin mass ratio was 1.5 (range, 1.0–2.0) for H. annuus and 1.7 (range, 1.0–2.4) in H. argophyllus. Stem samples from these two species only differed statistically for a few cell wall chemistry traits; however, accession level differences within each species were apparent. Cell wall chemistry in both species was significantly affected by both location and planting density, thus demonstrating the need to select for these traits in the environment for which the crop will be produced. Overall, these results show that cultivated sunflower and silverleaf sunflower both possess the necessary phenotypic diversity to facilitate the development of a hybrid sunflower with improved lignocellulosic biofuels traits, namely increased biomass, decreased lignin, and increased glucan. 相似文献
15.
A standard ISO Life Cycle Assessment study was carried out to evaluate the environmental sustainability of electricity production from an anaerobic digestion (AD) plant using a mixture of dedicated energy crops, agricultural residues and livestock effluents as input materials. The functional unit was 1 MJ of electricity. System boundaries were from cradle to grave and covered all the phases from energy crops cultivation to the production of biogas and its use in a Combined Heat and Power plant to produce electricity. Liquid and solid digestate storage and spreading on agricultural land were included. Primary data were collected from the AD plant for all the above phases. Since heat produced is used only internally, no allocation was applied in the study. As regards digestate management, CH4 emissions were calculated from literature, whereas four literature methods were applied for calculation of nitrogen emissions with the goal to perform a sensitivity analysis on LCA results. ILCD Handbook impact assessment methodologies were used. Results show that the main hotspots are energy crops cultivation and the management of digestate, mainly because of both nitrogen and methane emissions, affecting Global Warming, Acidification, Marine and Freshwater Eutrophication. Finally, a detailed Monte Carlo analysis, was carried out to evaluate the results uncertainty. The study represents the state of the art about the environmental performance of the AD plant with the use of sensitivity and uncertainty analysis, which both improve the reliability of results, and allows drawing general conclusions on how to mitigate the environmental impacts of AD process. 相似文献
16.
In the present paper the functionality of the Semisubmersible wind energy and Flap-type wave energy Converter (SFC) is examined experimentally. In order to study the functionality of the SFC, the focus is on operational environmental conditions. SFC is a combined concept that utilizes offshore wind energy and ocean wave energy for power production. Details are presented as far as the physical modelling of the wind turbine with the use of a redesigned small-scale rotor and of the Power Take-Off mechanism of the Wave Energy Converters (WECs) with the use of a configuration that is based on a mechanical rotary damper. Tests with quasi-static excitation, motion decay, regular and irregular waves without and with wind that is uniform are conducted on an 1:50 scale physical model. The experimental data are compared with numerical predictions obtained by a fully coupled numerical model using Simo/Riflex tool. A good agreement is observed between experimental and numerical predictions. The combined operation of WECs doesn't affect the tension of mooring lines nor the acceleration of nacelle and the bending moment in tower's base. The produced power of the WECs of the SFC and consequently the functionality of the SFC is estimated. 相似文献
17.
This paper reviews developments in the direct-fired biomass power sector and provides an up to date investment outlook by calculating the Net Present Value of new investments, and the appropriate level of Feed-in-Tariff needed to stimulate future investment. An overview is provided of support policies, historical growth in installations, and main market players. A number of data sources is combined to build a database with detailed information of individual biopower projects. This data is used to describe technological and market trends, which are used in a cash flow model to calculate the NPV of a typical project. The NPV for new projects is estimated to be negative, and investment should be expected to stall without proper policy intervention. Increasing fuel prices, local competition over biomass fuel resources, lower than expected operational performance and a downturn in carbon markets have deteriorated the investment outlook. In order to ensure reasonable profitability, the Feed-In-Tariff should be increased, from the current level of 90.9 € MWh−1, to between 97 and 105 € MWh−1. Where possible, government organizations should help organize demand for the supply of heat. Local rural energy bureaus may help organize supply networks for biomass fuels throughout the country, in order to reduce seasonal and local fuel scarcity and price fluctuations. 相似文献
18.
The European Union relies largely on bioenergy to achieve its climate and energy targets for 2020 and beyond.We assess, using Attributional Life Cycle Assessment (A-LCA), the climate change mitigation potential of three bioenergy power plants fuelled by residual biomass compared to a fossil system based on the European power generation mix. We study forest residues, cereal straws and cattle slurry.Our A-LCA methodology includes: i) supply chains and biogenic-CO2 flows; ii) explicit treatment of time of emissions; iii) instantaneous and time-integrated climate metrics.Power generation from cereal straws and cattle slurry can provide significant global warming mitigation by 2100 compared to current European electricity mix in all of the conditions considered.The mitigation potential of forest residues depends on the decay rate considered. Power generation from forest logging residues is an effective mitigation solution compared to the current EU mix only in conditions of decay rates above 5.2% a−1. Even with faster-decomposing feedstocks, bioenergy temporarily causes a STR(i) and STR(c) higher than the fossil system.The mitigation potential of bioenergy technologies is overestimated when biogenic-CO2 flows are excluded. Results based solely on supply-chain emissions can only be interpreted as an estimation of the long-term (>100 years) mitigation potential of bioenergy systems interrupted at the end of the lifetime of the plant and whose carbon stock is allowed to accumulate back.Strategies for bioenergy deployment should take into account possible increases in global warming rate and possible temporary increases in temperature anomaly as well as of cumulative radiative forcing. 相似文献
19.
The aim of this study was to advance in understanding of digestion process of energy crops. Cellulose and maize silage were fermented in batch mode at mesophilic (38 °C) and thermophilic (55 °C) conditions and corresponding organic loads of 5.5 ± 0.2 kgVS/m3, 11.2 ± 0.3 kgVS/m3 and 16.7 ± 0.4 kgVS/m3.For both substrates more stable and faster digestion took place at 38 °C. Due to complex structure maize degradation was characterized by varying digestion rate and longer total digestion time resulting form breakdown of hard-degradable fractions. The digestion retard at increased OLRs of cellulose and lower degradation level obtained for all cellulose series confirm a higher overloading potential for systems dealing with single-component-substrates but also the enhanced sensitivity of such systems to any inconvenient digestion conditions.Based on observed patterns of volatile fatty acids and oxidation-reduction potential, different fermentation mechanisms can be concluded for cellulose and maize, but also for different temperature modes. Conversion of maize at highly reductive conditions with increased concentrations of butyric acid was accompanied by much higher activity of hydrogenotrophic methanogens than for cellulose digestion.Two factors showed a strong potential to influence test results: an insufficient VS content of inoculum, which caused reduced biogas yields, and a high natural biodiversity of maize silage, resulting in higher biogas yields than calculated based on the maize composition. 相似文献
20.
Growth, biomass yield, fiber content and lodging resistance were studied, during a six month growth period, for eight varieties of Cenchrus purpureus, intended as energy crop, in Veracruz, Mexico. Then, only yield at day 182 was assessed for two additional years. The varieties were: CT115 (CT), African Cane (AC), Taiwan (TAI), King Grass (KG), Vruckwona (VRU), Roxo (RX), OM22 (OM) and Cameroon (CAM). Local weather is warm and sub-humid, historical data for monthly average temperature and annual rainfall were 25.8 °C and 1142 mm, respectively. Height, diameter and light interception were measured monthly from day 65–185. At day 185, biomass yield and tiller density were measured. Number of lying tillers was counted to estimate lodging resistance. Cellulose and hemicellulose content were estimated in leaf and stem. No differences were found for dry matter yield or stem yield at day 185 in the first year. Regarding the next two years, TAI yielded above CT, OM or ROX. Average dry matter yield was higher in the second year than in the establishment cycle (38.6 vs 21.1 Mg ha−1), but decreased in the third year (32.2 Mg ha−1). In both stem and whole plant, AC and KG showed higher hemicellulose content than RX, OM or CT; while AC and VRU had higher cellulose than RX in stem, or than CT in the whole plant. Furthermore, varieties AC, KG, VRU and TAI were resistant to lodging and had a higher fiber content, so they are recommended as energetic crops. 相似文献