首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The interfacial bond strength of long high-strength steel fibers embedded in ultra-high-performance concrete (UHPC) reinforced with short steel microfibers was investigated by conducting single-fiber pullout tests. In particular, the influence of the addition of a shrinkage-reducing to a UHPC matrix on the pullout resistance of high-strength steel fibers was investigated. The addition of a shrinkage-reducing agent produced a noticeable reduction in the fiber pullout resistance owing to the lower matrix shrinkage, although the reduction of pullout resistance differed according to the type of fiber. Long smooth and twisted steel fibers were highly sensitive to the addition of the shrinkage-reducing agent whereas hooked fibers were not. Among the various high-strength steel fibers tested, twisted steel macrofibers showed the highest interfacial bond resistance, although twisted fibers embedded in UHPC showed slip softening pullout behavior rather than the typical slip hardening behavior observed in mortar.  相似文献   

2.
High Performance Fiber Reinforced Concrete (HPFRC) is a structural material with advanced mechanical properties. The structural design of HPFRC members is based on the post-cracking residual strength provided by the addition into the mix of the fibers. Moreover, the addition of different types of mineral admixtures influences the overall behavior of this material. In order to optimize the performance of HPFRC in structural members, it is necessary to evaluate the mechanical properties and the post-cracking behavior in a reliable way. As a result, an experimental study on six different sets of HPFRC specimens was carried out. The main parameters that varied were the fiber volume content and the types of mineral addition. The behavior in compression, in flexural tension and the shrinkage properties were evaluated and critically analyzed in order to give a guide for structural use.The results showed that by adding high fiber volume content and the Algerian blast furnace slag into the mix, the HPFRC material obtained has a very good performance and it is suitable for use in practice.  相似文献   

3.
钢纤维对超高性能混凝土抗弯力学性能的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
为研究长、短钢纤维对超高性能混凝土(UHPC)受弯力学性能的影响,设计并制作了13组标准养护条件下的UHPC试件,其中3组为掺单一型短钢纤维,其他组均为掺混杂型钢纤维,对其进行立方体抗压及四点抗折试验。结果表明:对于掺加单一型短钢纤维的钢纤维/UHPC,钢纤维体积掺量为5vol%时,抗折强度最大,为19.98 MPa,继续增加钢纤维掺量,抗折强度反而降低;掺混杂型钢纤维的UHPC比单一型的抗折强度高,并且当长、短钢纤维体积掺量分别为2vol%和1vol%时,抗折强度达到最大,为23.55 MPa;钢纤维/UHPC的抗弯力学性能主要受长纤维的影响,短纤维影响较小;长纤维掺量对钢纤维/UHPC的抗折强度、延性以及抗弯韧性有一定影响,但是主要取决于长、短纤维的搭配,长、短纤维体积掺量最优搭配为2vol%和1vol%。  相似文献   

4.
This study investigated the effects of reinforcing bar type and reinforcement ratio on the restrained shrinkage behaviors of ultra high performance fiber reinforced concrete (UHPFRC), including autogenous shrinkage stress, degree of restraint, and cracking potential. In addition, the influence of the type and embedment length of reinforcing bars on the bond behavior of UHPFRC was evaluated by performing pullout test. Three different reinforcing bars (deformed steel bar, round steel bar, and GFRP bar) were investigated in the restrained shrinkage and pullout tests. The GFRP bar exhibited the best performance in relation to the autogenous shrinkage stress, degree of restraint, and cracking potential because of its low stiffness. The highest bond strength was obtained for the deformed steel bar, and the bar yielding was observed when the bar embedment length of lb = 2db was used. The round steel bar exhibited the poorest behaviors for both of the restrained shrinkage and pullout.  相似文献   

5.
I. Iskhakov  Y. Ribakov   《Materials & Design》2008,29(8):1616-1622
The paper is focused on analysis of two-layer bending pre-stressed beams consisting of steel fibered (SF) high strength concrete (HSC) in compressed zone and normal strength concrete (NSC) in tensile zone. Investigation of such beams is important for RC structural design, because calculation of fibers volume ratio is significant, like that of reinforcing steel bars for usual RC elements. In other words, such elements are made of high performance concrete (HPC). There is a growing tendency that more effective HPC structures replace NSC ones, first of all in pre-stressed elements. Definition of the HSC class lower limit, to be used in the compressed zone of a two-layer pre-stressed beam, is given. It was demonstrated that SF have little effect on the beam elastic deflections. However, the ultimate deflections of the section increase because additional potential for plastic energy dissipation (PED) in the bending element. NSC, used in the section tensile zone, contributes additionally about 20% to the section’s PED potential compared to one-layer HSC beams. In order to guarantee sufficient section’s ductility of the pre-stressed beams, required to withstand dynamic loadings, a minimum SF ratio is proposed to be considered. The fibers take the tensile stresses, yielding cracks in the concrete matrix. A design method for calculation of the SF volume ratio, as a function of required ductility, is proposed. A numerical example, illustrating the efficiency of this method is presented.  相似文献   

6.
This experimental research investigates the mechanical properties and shrinkage of ultra high performance concrete (UHPC) incorporating coarser fine aggregates with maximum particle size of 5 mm. To adequately design UHPC mixtures using various sizes of solid constituents, particle packing theory was adopted. UHPC mixtures containing either dolomite or basalt, and four fiber volume fractions up to two volume percent were investigated. Uniaxial tension test was performed to evaluate the first cracking tensile strength, ultimate tensile strength, tensile strain capacity and cracking pattern. The UHPC mixtures with dolomite and steel fibers with more than one volume percent achieved more than 150 MPa of compressive strength at the age of 56 days, and showed strain hardening behavior and limited decrease in tensile strength compared to typical UHPC without coarser fine aggregates. The experimental results highlight the potential of dolomite used as coarser fine aggregate in UHPC.  相似文献   

7.
混杂纤维增强超高性能混凝土弯曲韧性与评价方法   总被引:3,自引:0,他引:3       下载免费PDF全文
邓宗才 《复合材料学报》2016,33(6):1274-1280
为了研究混掺纤维对超高性能混凝土(UHPC)的增韧效果, 通过161个三点弯曲梁的断裂试验, 测定了4种纤维和不同掺量下各UHPC试件的载荷-裂口张开位移(CMOD)曲线和载荷-挠度曲线。将素UHPC峰值载荷对应的CMOD视为混杂纤维增强UHPC的初裂CMOD值, 基于载荷-CMOD曲线提出了等效断裂韧度的韧性评价方法, 该方法具有明确的物理含义, 可用于分析混掺纤维品种和掺量对UHPC断裂韧性的影响规律。研究发现:在小变形(小于50倍素UHPC峰值载荷对应的CMOD值)时, UHPC韧性取决于钢纤维的掺率;粗合成纤维主要在中等变形和大变形阶段(大于50倍素UHPC峰值载荷对应的CMOD值)发挥其增韧效用。   相似文献   

8.
Enhanced matrix packing density and tailored fiber-to-matrix interface bond properties have led to the recent development of ultra-high performance fiber reinforced concrete (UHP-FRC) with improved material tensile performance in terms of strength, ductility and energy absorption capacity. The objective of this research is to experimentally investigate and analyze the uniaxial tensile behavior of the new material. The paper reviews and categorizes a variety of tensile test setups used by other researchers and presents a revised tensile set up tailored to obtain reliable results with minimal preparation effort. The experimental investigation considers three types of steel fibers, each in three different volume fractions. Elastic, strain hardening and softening tensile parameters, such as first cracking stress and strain, elastic and strain hardening modulus, composite strength and energy dissipation capacity, of the UHP-FRCs are characterized, analyzed and linked to the crack pattern observed by microscopic analysis. Models are proposed for representing the tensile stress–strain response of the material.  相似文献   

9.
This paper presents the effects of various amounts of steel fibers on the behaviour of eccentrically loaded high strength reinforced concrete columns. A total of 14 both short and slender square section steel fiber and plain high strength reinforced concrete column specimens were constructed and tested to investigate the addition of steel fibers on load–deflection behaviour, ultimate strength capacity, ductility and confinement. The complete nonlinear experimental stress–strain relationships of steel fiber and plain high strength concrete were obtained for different concrete strengths. In the study, a theoretical procedure considering the nonlinear behaviour of the materials is proposed for ultimate strength analysis and load–deflection behaviour of eccentrically loaded columns including slenderness effect. The complete experimental and theoretical biaxial load–deflection curves of the column specimens have been obtained and reported in the paper. The column specimens and some steel fiber columns available in the literature have been analysed for the ultimate strength capacities. Good agreement has been achieved between the analysis and the test results.  相似文献   

10.
杨娟  朋改非 《复合材料学报》2016,33(12):2931-2940
采用普通原材料制备56 d龄期抗压强度为140~160 MPa的空白组超高性能混凝土、钢纤维超高性能混凝土及混杂纤维超高性能混凝土,测定其遭受高温作用后的残余抗压强度和劈裂抗拉强度,并对100%含湿量的混凝土试块进行高温爆裂试验。此外,测定大小2种加热速率对超高性能混凝土高温爆裂行为的影响。结果表明:所配制混凝土的残余抗压强度均随着目标温度的升高呈现先增大再降低的趋势,800℃高温后的残余抗压强度约为常温强度的30%。钢纤维与混杂纤维混凝土的残余劈裂抗拉强度亦呈现先升高再降低的趋势,800℃高温后的残余劈裂抗拉强度分别为常温强度的15.1%和35.4%。空白组混凝土的残余劈裂抗拉强度随着目标温度的升高而单调下降,800℃高温后的强度值约为常温强度的20.3%。7.5℃/min加热速率下,100%含湿量的3种混凝土试块均发生了严重高温爆裂,单掺钢纤维可以改善超高性能混凝土的高温爆裂,但不能避免爆裂的发生,而混杂纤维对超高性能混凝土高温爆裂的改善效果并未显著优于钢纤维。2.5℃/min加热速率下,混杂纤维可避免部分超高性能混凝土试块发生爆裂。   相似文献   

11.
Direct tensile behavior of high performance fiber reinforced cementitious composites (HPFRCCs) at high strain rates between 10 s−1 and 30 s−1 was investigated using strain energy frame impact machine (SEFIM) built by authors. Six series of HPFRCC combining three variables including two types of fiber, hooked (H) and twisted (T) steel fiber, two fiber volume contents, 1% and 1.5%, and two matrix strengths, 56 MPa and 81 MPa, were investigated. The influence of these three variables on the high strain rate effects on the direct tensile behavior of HPFRCCs was analyzed based on the test results. All series of HPFRCCs showed strongly sensitive tensile behavior at high strain rates, i.e., much higher post cracking strength, strain capacity, and energy absorption capacity at high strain rates than at static rate. However, the enhancement was different according to the types of fiber, fiber volume content and matrix strength: HPFRCCs with T-fibers produced higher impact resistance than those with H-fibers; and matrix strength was more influential, than fiber contents, for the high strain rate sensitivity. In addition, an attempt to predict the dynamic increase factor (DIF) of post cracking strength for HPFRCCs considering the influences of fiber type and matrix strength was made.  相似文献   

12.
Tension stiffening is still a matter of discussion into the scientific community; the study of this phenomenon is even more relevant in structural members where the total reinforcement consists of a proper combination of traditional rebars and steel fibers. In fact, fiber reinforced concrete is now a worldwide-used material characterized by an enhanced behavior at ultimate limit states as well as at serviceability limit states, thanks to its ability in providing a better crack control.This paper aims at investigating tension stiffening by discussing pure-tension tests on reinforced concrete prisms having different sizes, reinforcement ratios, amount of steel fibers and concrete strength. The latter two parameters are deeply studied in order to determine the influence of fibers on crack patterns as well as the significant effect of the concrete strength; both parameters determine narrower cracks characterized by a smaller crack width.  相似文献   

13.
In the present study an ultra high strength armour steel was austenatised at 910°C followed by tempering at 200, 300, 400, 500 and 600°C. After heat treatment the properties of tensile strength, ductility, charpy impact strength, hardness and microstructure were evaluated from the mechanical tests and metallographic analysis respectively. The ballistic behavior of the heat-treated plates was evaluated impacting against non-deformable hard steel core projectiles at 840 ± 15 m/s at normal angle of attack. The changes in the microstructure and mechanical properties with heat treatment have been correlated with ballistic performance of the steel. Experimental results showed that 200°C tempering gives the best ballistic performance.  相似文献   

14.
利用循环伏安多重扫描法分析了不同电解质的氧化能力及其氧化特点,讨论了在表面氧化处理中不同电解液体系对高模高强碳纤维力学性能的影响,提出了适合高强高模碳纤维表面处理的工艺条件,并通过Raman光谱、XPS与SEM的表征,研究了电化学氧化对高强高模碳纤维表面结构及力学性能的影响。研究结果表明,与NH4H2PO4溶液相比,用NH4H2PO4与CH3COONH4复合的电解质溶液对碳纤维进行表面处理,能大幅度提高纤维表面含氧官能团,而且纤维表面sp2杂化碳原子相对含量也较多,在提高了碳纤维/环氧树脂复合材料层间剪切强度(ILSS)的同时,还较好地保持了高强高模碳纤维本体力学性能。当CH3COONH4与NH4H2PO4的物质的量之比为2:1时,碳纤维/环氧树脂复合材料的ILSS与未处理纤维相比提高了168%,而碳纤维拉伸强度却下降很小,此复合电解质溶液是一种较为理想的对高强高模碳纤维进行表面改性的电解质体系。  相似文献   

15.
Ultra-high performance concrete (UHPC) is promising in construction of concrete structures that suffer impact and explosive loads. In order to make UHPC structures more ductile and cost-effective, hybrid fiber reinforcements are often incorporated. In this study, a reference UHPC mixture with no fiber reinforcement and five mixtures with a single type of fiber reinforcement or hybrid fiber reinforcements of 6 and 13 mm in length at a total dosage of 2%, by the volume of concrete, were prepared. Quasi-static compressive and flexural properties of those mixtures were investigated. Split Hopkinson press bar (SHPB) testing was adopted to evaluate their dynamic compressive properties under three impact velocities. Test results indicated that UHPC with 1.5% long fiber reinforcements and 0.5% short fiber reinforcements demonstrated the best static and dynamic mechanical properties. The static compressive and flexural strengths of UHPC with 2% long fiber reinforcements were greater than those with 2% short fiber reinforcements, whereas comparable dynamic compressive properties were observed. Strain rate effect was observed for the dynamic compressive properties, including peak stress, dynamic increase factor, and absorbed energy. The reinforcing mechanisms of hybrid fiber reinforcements in UHPC were eventually discussed.  相似文献   

16.
通过室内模型低周往复加载试验及非线性有限元分析,对焊接环式箍筋约束高强混凝土柱的抗震性能进行了研究.研究了轴压比、配箍率两个参数对柱抗震性能的影响规律.结果表明:通过ABAQUS软件对焊接环式箍筋约束高强混凝土柱的有限元分析结果与试验结果符合较好;随着轴压比的提高,柱的水平承载力变大,延性和耗能能力变差,骨架曲线的强度...  相似文献   

17.
通过纤维/高强混凝土快速冻融循环试验,从试件外观损伤形态、相对动弹性模量、抗冻等级、抗冻耐久性指数角度,研究了不同纤维体积分数的玄武岩纤维、纤维素纤维和不同纤维长度的玄武岩纤维对C60高强混凝土抗冻性能的影响。结果表明,加入玄武岩或纤维素纤维可改善C60高强混凝土的外观剥落损伤程度。C60高强混凝土的抗冻性均随玄武岩纤维(长度为18 mm)和纤维素纤维体积分数的增大而提高,在体积分数0.10vol%~0.20vol%内,前者的提高程度远大于后者,玄武岩纤维/高强混凝土能在更严酷的寒冷环境中满足更久的使用时间。玄武岩纤维长度的改变对C60高强混凝土的抗冻性影响较大,相对于18 mm长度,6 mm和30 mm长度的玄武岩纤维对C60高强混凝土抗冻性能改善作用很有限。   相似文献   

18.
For the numerical prediction of the response of concrete structures under extreme dynamic loading, like debris impact and explosions, reliable material data and material models are essential. TNO-PML and the Delft University of Technology collaborate in the field of impact dynamics and concrete modelling. Recently, TNO-PML developed an alternative Split Hopkinson Bar test methodology which is based on the old principle of spalling, but equipped with up-to-date diagnostic tools and to be combined with advanced numerical simulations. Data on dynamic tensile strength and, most important, on fracture energy at loading rates up to 1000 GPa/s are obtained. The paper describes the test and measurement set-up, presents the new test data and the analysis of the test results. In addition, a rate-dependent softening curve is given which is based on the integrated findings so far.  相似文献   

19.
In this work, the effect of cooling rate on the high strain rate behavior of hardened boron steel was investigated. A furnace was used to austenize boron sheet metal blanks which were then quenched in various media. The four measured cooling rates during the solid state transformation were: 25 (compressed air quench), 45 (compressed air quench), 250 (oil quench) and 2200 °C/s (water quench). Micro-hardness measurements and optical microscopy verified the expected as-quenched microstructure for the various cooling rates. Miniature dog-bone specimens were machined from the quenched blanks and tested in tension at a quasi-static rate, 0.003 s−1 (Instron) and a high rate, 960 s−1 (split Hopkinson tensile bar). The resulting stress vs. strain curves showed that the UTS increased from 1270 MPa to 1430 MPa as strain rate increased for the specimens cooled at 25 °C/s, while the UTS increased from 1615 MPa to 1635 MPa for the specimens cooled at 2200 °C/s. The high rate tests showed increased ductility for the 25, 45 and 250 °C/s specimens, while the specimens cooled at 2200 °C/s showed a slight decrease. The Hollomon hardening curve was fit to the true stress vs. true strain curves and showed that the mechanical response of the high rate tests exhibited a greater rate of hardening prior to fracture than the quasi-static tests. The hardening rate also increased for the specimens quenched at higher cooling rates. Optical micrographs of the fractured specimens showed that the failure mechanism transformed from a ductile-shear mode at the lower cooling rates to a shear mode at the high cooling rates.  相似文献   

20.
In this research work, High Performance Concrete (HPC) was produced employing 30% of fly ash and 70% of Portland cement as binder materials. Three types of coarse recycled concrete aggregates (RCA) sourced from medium to high strength concretes were employed as 100% replacement of natural aggregates for recycled aggregate concrete (RAC) production. The specimens of four types of concretes (natural aggregate concrete (NAC) and three RACs) were subjected to initial steam curing besides the conventional curing process. The use of high quality RCA (>100 MPa) in HPC produced RAC with similar or improved pore structures, compressive and splitting tensile strengths, and modulus of elasticity to those of NAC. It was determined that the mechanical and physical behaviour of HPC decreased with the reduction of RCA quality. Nonetheless steam-cured RACs had greater reductions of porosity up to 90 days than NAC, which led to lower capillary pore volume.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号