首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Knowledge regarding the solar radiation reaching the earth’s surface and its geographical distribution is very important for the use of solar energy as a resource to produce electricity. Therefore, a proper assessment of available solar resource is particularly important to determine the placement and operation of solar thermal power plants. To perform this analysis correctly, it is necessary to determine the main factors influencing the radiation reaching the earth’s surface, such as the earth’s geometry, terrain, and atmospheric attenuation by gases, particles and clouds. Among these factors, it is important to emphasise the role of clouds as the main attenuating factor of radiation. Information about the amount and type of clouds present in the sky is therefore necessary to analyse both their attenuation levels and the prevalence of different sky conditions. Cloud cover is characterised according to attenuation levels, using the beam transmittance (kb, ratio of direct radiation incident on the surface to the extraterrestrial solar radiation) and hemispherical sky images. An analysis of the frequency and duration of each type of cloud cover blocking the sun’s disk is also performed. Results show prevailing sky situations that make the studied area very suitable for the use of solar energy systems.  相似文献   

2.
Power generation from wind and solar sources is growing in importance, but requires back up from fossil fuel plants, greatly compromising fossil fuel plant economics. This includes the economics of most proposed IGCC–Hypogen type plant schemes which are intended to produce hydrogen and electricity, as well as capturing CO2. IGCC–Hypogen plants, however, that are able to change the ratio of hydrogen to electricity will be able to operate at maximum capacity all of the time, switching from power generation to hydrogen production as the demand for these two forms of energy changes. Because of the need to provide power to the IGCC–Hypogen ancillaries, some hydrogen from the plant will have to be utilised to supply some of this power. A preliminary economic study examines how the plant could produce electricity and hydrogen at competitive prices.  相似文献   

3.
Solar thermal power plants will provide a major share of the renewable energy sources needed in the future. STEPS, an evaluation system for solar thermal power stations, was designed to calculate the performance of such power stations as a function of direct solar radiation, geographical conditions (land slope, land cover, distance from cooling water resources, etc.), infrastructure (pipelines, electricity grids, streets etc.) and the configuration and performance of a selected solar thermal power plant concept. A cloud index derived from METEOSAT satellite images is used to calculate the direct solar radiation resource. A geographic information system (GIS) is used to process all the parameters for site assessment. In order to demonstrate the concept, an analysis of Northern Africa was performed with STEPS providing a ranking of sites with respect to the potential and cost of solar thermal electricity for a particular power plant configuration. Results were obtained with high spatial and temporal resolution.  相似文献   

4.
《Energy Policy》2005,33(10):1251-1259
The use of fossil fuels should be reduced in near future due to their limited resources and increasing ecological impacts. Therefore, increased interest and incentives have been created for development of electricity supply utilizing renewable energy such solar energy, which has long-range potential and is applicable in most geographical regions. This paper describes the methodology used to study solar supported steam generation in combined cycle power plants. The existing algorithms for unit commitment and production simulation were modified and extended to account for the mode of operation of these solar supported plants. Moreover, the economic impact of solar energy is assessed in the form of cost/benefit ratio to justify the substitution potential of such clean energy. The feasibility of solar energy substitution is illustrated using the planned 2×130 MW solar supported plant in Kuraymat, which would be integrated to the Egyptian unified power network.  相似文献   

5.
Usual size of parabolic trough solar thermal plants being built at present is approximately 50 MWe. Most of these plants do not have a thermal storage system for maintaining the power block performance at nominal conditions during long non-insolation periods. Because of that, a proper solar field size, with respect to the electric nominal power, is a fundamental choice. A too large field will be partially useless under high solar irradiance values whereas a small field will mainly make the power block to work at part-load conditions.This paper presents an economic optimization of the solar multiple for a solar-only parabolic trough plant, using neither hybridization nor thermal storage. Five parabolic trough plants have been considered, with the same parameters in the power block but different solar field sizes. Thermal performance for each solar power plant has been featured, both at nominal and part-load conditions. This characterization has been applied to perform a simulation in order to calculate the annual electricity produced by each of these plants. Once annual electric energy generation is known, levelized cost of energy (LCOE) for each plant is calculated, yielding a minimum LCOE value for a certain solar multiple value within the range considered.  相似文献   

6.
The ongoing transformation of the European energy system comes along with new challenges, notably increasing amounts of power generation from intermittent sources like wind and solar. How current objectives for emission reduction can be reached in the future and what the future power system will look like is, however, not fully clear. In particular, power plant investments in the long run and power plant dispatch in the short run are subject to considerable uncertainty. Therefore an approach is presented which allows electricity market development to be assessed in the presence of stochastic power feed-in and endogenous investments in power plants and renewable energies. To illustrate the range of possible future developments, five scenarios for the European electricity system up to 2050 are investigated. Both generation investments and dispatch as well as utilization of transmission lines are optimized for these scenarios and additional sensitivity analyses are carried out.  相似文献   

7.
Solar power plants positioned in space for terrestrial electricity use have been proposed due to the ever-rising world energy consumption and its environmental impacts. This idea is analysed here in the context of sustainability of such power generation. To that end we have performed some new economic, environmental and social effects analysis of electricity generation by solar space power plants of both photovoltaic and solar thermal types power using the best currently available technology. The plants in the analysis were assumed to be in different Earth orbits, or on the Moon built by a robotised factory. One of our results is that both economically and environmentally the best scenario may be to launch a thermal solar power plant to the geostationary orbit from the Moon. Electricity produced in this way could be economically competitive to that generated by fossil fuels on Earth already for as few as 100 space power plants of about 5-10 GW each. This option is also deemed socially responsible with its capacity to reduce poverty with large amounts of cheap clean energy, and environmentally friendly, because it produces more than a hundred times less emissions than the same amount of electricity produced from fossil fuels on Earth.  相似文献   

8.
The main results of a feasibility study of a combined cycle electricity generation plant, driven by highly concentrated solar energy and high-temperature central receiver technology, are presented. New developments in solar tower optics, high-performance air receivers and solar-to-gas turbine interface, were incorporated into a new solar power plant concept. The new design features 100% solar operation at design point, and hybrid (solar and fuel) operation for maximum dispatchability. Software tools were developed to simulate the new system configuration, evaluate its performance and cost, and optimize its design. System evaluation and optimization were carried out for two power levels. The results show that the new system design has cost and performance advantages over other solar thermal concepts, and can be competitive against conventional fuel power plants in certain markets even without government subsidies.  相似文献   

9.
A carefully prepared set of Australian radiation and meteorological data was used to develop a system for estimating hourly or instantaneous broad band direct, diffuse and global radiation from meteorological observations. For clear sky conditions relationships developed elsewhere were adapted to Australian data. For cloudy conditions the clouds were divided into two groups, high clouds and opaque (middle and low) clouds, and corrections were made to compensate for the bias due to reporting practices for almost clear and almost overcast skies. Careful consideration was given to the decrease of visible sky toward the horizon caused by the vertical extent of opaque clouds. Equations relating cloud and other meteorological observations to the direct and diffuse radiation contained four unknown quatities, functions of cloud amount and of solar elevation, which were estimated from the data. These were the proportions of incident solar radiation passed on as direct and as diffuse radiation by high clouds, and as diffuse radiation by opaque clouds, and a factor to describe the elevation dependance of the fraction of sky not obscured by opaque clouds. When the resulting relationships were used to estimate global, direct and diffuse radiation on a horizontal surface, the results were good, especially for global radiation. Some discrepancies between estimates and measurements of diffuse and direct radiation were probably due to erroneously high measurements of diffuse radiation.  相似文献   

10.
Parabolic trough power plants are currently the most commercial systems for electricity generation. In this study, a transient numerical simulation of a solar power plant was developed by using direct steam generation (DSG) technology. In this system, condensate water from a Rankine cycle is pumped directly to solar parabolic trough collectors. The pressurized water is heated and evaporated before being superheated inside the solar collectors and directed back to the steam turbines, where the Rankine cycle is a reheated‐regenerative cycle. The plant performance with saturated steam production is compared with the performance of a superheated plant. A mathematical model of each system component is presented, with the solar power cycle modeled by the TRNSYS‐17 simulation program. Annual transient performance, including plant power and efficiency, is presented for both plants. As expected, the power of the superheated plant outperforms the saturated plant by approximately 45%, whereas the efficiency decreases by approximately 10%. Furthermore, the power of such plants is considerably improved under the weather of Makkah, 22.4°N, and it is approximately 40 MW for both the spring and autumn seasons. The annual generated energy is approximately 8062 MWh. The levelized electricity cost (LEC) was estimated for both the DSG and the corresponding synthetic oil plants. The DSG plant has an approximately 3% higher LEC than a synthetic oil plant with heat storage and an approximately 11.2% lower LEC than an oil plant if the plant has no storage. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
Direct steam generating parabolic trough power plant is an important technology to match future electric energy demand. One of the problems related to its emergence is energy storage. Solar-to-hydrogen is a promising technology for solar energy storage. Electrolysis is among the most processes of hydrogen production recently investigated. High temperature steam electrolysis is a clean process to efficiently produce hydrogen. In this paper, steam electrolysis process using solar energy is used to produce hydrogen. A heat recovery steam generator generates high temperature steam thanks to the molten carbonate fuel cell's waste heat. The analytical study investigates the energy efficiency of solar power plant, molten carbonate fuel cell and electrolyser. The impact of waste heat utilization on electricity and hydrogen generation is analysed. The results of calculations done with MATLAB software show that fuel cell produces 7.73 MWth of thermal energy at design conditions. 73.37 tonnes of hydrogen and 14.26 GWh of electricity are yearly produced. The annual energy efficiency of electrolyser is 70% while the annual mean electric efficiency of solar power plant is 18.30%.The proposed configuration based on the yearly electricity production and hydrogen generation has presented a good performance.  相似文献   

12.
13.
Due to strong increase of solar power generation, the predictions of incoming solar energy are acquiring more importance. Photovoltaic and solar thermal are the main sources of electricity generation from solar energy. In the case of solar thermal energy plants with storage energy system, its management and operation need reliable predictions of solar irradiance with the same temporal resolution as the temporal capacity of the back-up system. These plants can work like a conventional power plant and compete in the energy stock market avoiding intermittence in electricity production.This work presents a comparisons of statistical models based on time series applied to predict half daily values of global solar irradiance with a temporal horizon of 3 days. Half daily values consist of accumulated hourly global solar irradiance from solar raise to solar noon and from noon until dawn for each day. The dataset of ground solar radiation used belongs to stations of Spanish National Weather Service (AEMet). The models tested are autoregressive, neural networks and fuzzy logic models. Due to the fact that half daily solar irradiance time series is non-stationary, it has been necessary to transform it to two new stationary variables (clearness index and lost component) which are used as input of the predictive models. Improvement in terms of RMSD of the models essayed is compared against the model based on persistence. The validation process shows that all models essayed improve persistence. The best approach to forecast half daily values of solar irradiance is neural network models with lost component as input, except Lerida station where models based on clearness index have less uncertainty because this magnitude has a linear behaviour and it is easier to simulate by models.  相似文献   

14.
Solar energy is an attractive renewable energy source because the sun's energy is plentiful and carbon-free. However, solar energy is intermittent and not suitable for base load electricity generation without an energy backup system. Concentrated solar power (CSP) is unique among other renewable energy options because it can approach base load generation with molten salt thermal energy storage (TES). This paper describes the development of an engineering economic model that directly compares the performance, cost, and profit of a 110-MW parabolic trough CSP plant operating with a TES system, natural gas-fired backup system, and no backup system. Model results are presented for 0–12 h backup capacities with and without current U.S. subsidies. TES increased the annual capacity factor from around 30% with no backup to up to 55% with 12 h of storage when the solar field area was selected to provide the lowest levelized cost of energy (LCOE). Using TES instead of a natural gas-fired heat transfer fluid heater (NG) increased total plant capital costs but decreased annual operation and maintenance costs. These three effects led to an increase in the LCOE for PT plants with TES and NG backup compared with no backup. LCOE increased with increasing backup capacity for plants with TES and NG backup. For small backup capacities (1–4 h), plants with TES had slightly lower LCOE values than plants with NG backup. For larger backup capacities (5–12 h), plants with TES had slightly higher LCOE values than plants with NG backup. At these costs, current U.S. federal tax incentives were not sufficient to make PT profitable in a market with variable electricity pricing. Current U.S. incentives combined with a fixed electricity price of $200/MWh made PT plants with larger backup capacities more profitable than PT plants with no backup or with smaller backup capacities. In the absence of incentives, a carbon price of $100–$160/tonne CO2eq would be required for these PT plants to compete with new coal-fired power plants in the U.S. If the long-term goal is to increase renewable base load electricity generation, additional incentives are needed to encourage new CSP plants to use thermal energy storage in the U.S.  相似文献   

15.
This paper provides fundamental principles to study the thermodynamic performance of a new screw expander–based solar thermal electricity plant. While steam turbines are generally used in direct steam generation solar systems without admitting fluid in two-phase conditions, steam screw expanders, as volumetric machines, can convert thermal to mechanical energy also by expanding liquid-steam mixtures without a decline in efficiency. In effect, steam turbines are not as competitive as screw expanders when the net power is smaller than 2 MW and for low-grade heat sources. The solar electricity generation system proposed in this paper is based on the steam Rankine cycle: Water is used as both working fluid and storage, parabolic trough collectors are used as a thermal source, and screw expanders are used as power machines. Since screw expanders can operate at off-design working conditions in several situations when installed in direct steam generation solar plants, studying expander performance under fluctuating working situations is a crucial issue. The main aim of the present paper is to establish a thermodynamic model to study the energetic benefits of the proposed power system when off-design operating conditions and variable solar radiation occur. This entails, first and foremost, developing overexpansion and underexpansion numerical models to describe the polytropic expansion phase, which considers all the losses affecting performance of the screw expander under real operating conditions. To assess the best operating conditions and maximum efficiency of the whole power system at part-load working conditions under fluctuating solar radiations, parametric optimization is then improved in a wide range of variable working conditions, assuming condensation pressures of water increasing from 0.1 to 1 bar, under an evaporation temperature rising from 170°C to 300°C.  相似文献   

16.
Solar energy, wind, sky radiation, daily temperature range, city organic wastes and waste water, and energy plants may be employed to meet all the energy needs of a purely residential town. The energy requirements of a residential town of 4000 inhabitants are estimated. No major change in people's life-style, except for low temperature cooking by steam, is introduced. Four methods of solar energy utilization are considered and it is concluded that the system in item 4 below is more suitable than the others.
1. (1) Central generation of electricity, hot or chilled water and steam (for low temperature cooking), and distribution to each building.
2. (2) Local generation of electricity, hot or chilled water, and steam, and central utilization of city wastes to produce methane gas for high temperature cooking.
3. (3) Central utilization of city wastes and growth of a plant for its energy values.
4. (4) Suitable design of the buildings to be heated or cooled passively through solar energy and other natural sources, local generation of hot water for washing and steam for low temperature cooking, central generation of electricity and central utilization of city wastes.
The transportation needs are to be met either by electricity or by a liquid fuel such as methanol, produced from an energy crop.  相似文献   

17.
The electricity consumption growth in Iran requires a rapid development of power plant construction. Like many other countries, most of the power plants in Iran are using fossil fuel. In the past decade, thermal power plants generated about 94% of electricity and about 6% was generated by renewable sources such as hydro-power. This study is to show a clear view of 42 years an evolutionary trend of Iran's electricity generation industry. The capacity of power generation installed and electricity generation from the years 1967 to 2008 has been gathered. The total pollutant emissions and emission per unit electricity generation for each type of power plants have also been calculated using emission factors and the pattern of electricity generation and emission has been presented. The results shown that encouraging of using renewable energy sources and increasing the contribution of the combined cycle as a best type of thermal power plants and use more natural gas is recommended to reduce emission.  相似文献   

18.
This paper describes the influence of the solar multiple on the annual performance of parabolic trough solar thermal power plants with direct steam generation (DSG). The reference system selected is a 50 MWe DSG power plant, with thermal storage and auxiliary natural gas-fired boiler. It is considered that both systems are necessary for an optimum coupling to the electricity grid. Although thermal storage is an opening issue for DSG technology, it gives an additional degree of freedom for plant performance optimization. Fossil hybridization is also a key element if a reliable electricity production must be guaranteed for a defined time span. Once the yearly parameters of the solar power plant are calculated, the economic analysis is performed, assessing the effect of the solar multiple in the levelized cost of electricity, as well as in the annual natural gas consumption.  相似文献   

19.
Solar power can provide substantial power supply to the grid; however, it is also a highly variable energy source due to changes in weather conditions, i.e. clouds, that can cause rapid changes in solar power output. Independent systems operators (ISOs) and regional transmission organizations (RTOs) monitor the demand load and direct power generation from utilities, define operating limits and create contingency plans to balance the load with the available power generation resources. ISOs, RTOs, and utilities will require solar irradiance forecasts to effectively and efficiently balance the energy grid as the penetration of solar power increases. This study presents a cloud regime-dependent short-range solar irradiance forecasting system to provide 15-min average clearness index forecasts for 15-min, 60-min, 120-min and 180-min lead-times. A k-means algorithm identifies the cloud regime based on surface weather observations and irradiance observations. Then, Artificial Neural Networks (ANNs) are trained to predict the clearness index. This regime-dependent system makes a more accurate deterministic forecast than a global ANN or clearness index persistence and produces more accurate predictions of expected irradiance variability than assuming climatological average variability.  相似文献   

20.
In life cycle assessment (LCA) of solar PV systems, energy pay back time (EPBT) is the commonly used indicator to justify its primary energy use. However, EPBT is a function of competing energy sources with which electricity from solar PV is compared, and amount of electricity generated from the solar PV system which varies with local irradiation and ambient conditions. Therefore, it is more appropriate to use site-specific EPBT for major decision-making in power generation planning. LCA and life cycle cost analysis are performed for a distributed 2.7 kWp grid-connected mono-crystalline solar PV system operating in Singapore. This paper presents various EPBT analyses of the solar PV system with reference to a fuel oil-fired steam turbine and their greenhouse gas (GHG) emissions and costs are also compared. The study reveals that GHG emission from electricity generation from the solar PV system is less than one-fourth that from an oil-fired steam turbine plant and one-half that from a gas-fired combined cycle plant. However, the cost of electricity is about five to seven times higher than that from the oil or gas fired power plant. The environmental uncertainties of the solar PV system are also critically reviewed and presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号