首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper deals with the analysis of the acoustic emission (AE) signals to determine the micro-process during stress corrosion cracking (SCC) of AISI type 316LN stainless steel that cause the AE, and thus the mechanism of the SCC process. AE with amplitudes ranging from 27.6 to 46.5 dB with different counts, energy and rise times occurred during SCC of type 316LN stainless steel in 45% MgCl2 at 413 K. The analysis of the AE signals in conjunction with fractography indicated that a surge in the AE counts and energy indicated initiation of SCC. AE was found to be continuous prior to the initiation. The time gap between AE events increased during initiation. AE events occurred in bursts during crack growth. Plastic deformation ahead of the crack tip was determined to be the major source of AE during propagation of SCC in type 316LN stainless steel. The cracking was found to initiate and propagate in the transgranular mode.  相似文献   

2.
This paper presents the role of addition of nitrite ions in susceptibility of a super duplex stainless steel, SAF 2507 to stress corrosion cracking (SCC) in chloride environment, which has a particular industrial relevance. Slow strain rate testing (SSRT) in 30 wt.% MgCl2 solution established SCC susceptibility, as evidenced by post-SSRT fractography. However, the addition of nitrite has interesting influence. At their lower concentrations, nitrite additions seem to decrease SCC susceptibility, whereas, at a higher concentration, it has an accelerating effect on SCC. Attempts have been made to understand this behaviour on the basis of the role of nitrite in passivation and pitting characteristics of SAF 2507 in chloride solution.  相似文献   

3.
利用光学显微镜(OM)、扫描电子显微镜(SEM)、能谱仪(EDX)和显微维氏硬度计对某开裂的不锈钢焊接管进行了失效原因分析。结果表明,该不锈钢管局部补焊区域存在残余应力,补焊造成附近组织晶界敏化,协同环境中存在S离子和Cl离子等腐蚀性介质,故在补焊位置发生应力腐蚀沿晶开裂。  相似文献   

4.
This research uses nonlinear Rayleigh surface waves to characterize stress corrosion cracking (SCC) damage in carbon steel. Cold rolled carbon steel is widely used for buried fuel pipelines; the environment surrounding these pipelines creates a mildly corrosive environment, which, in combination with an applied stress, can cause SCC. To ensure the safe operation of these structures, it is crucial that damage due to SCC be detected before their structural integrity is reduced by large cracks. In the early stages of SCC, microstructural changes such as dislocation formation and microcrack initiation occur, which have shown to considerably increase the acoustic nonlinearity of a material. These microstructural changes distort and generate higher harmonics in an initially monochromatic ultrasonic wave. This research considers four different levels of SCC induced in four separate 1018 steel specimens, a material which has a similar susceptibility to SCC as steel used for buried fuel pipelines. Then nonlinear ultrasonic measurements are performed before and after the SCC damage is induced. Nonlinear Rayleigh surface waves are utilized to detect the SCC damage that is concentrated near the material surface. The amplitudes of the fundamental and second harmonic waves are measured with contact wedge transducers at varying propagation distances to obtain the acoustic nonlinearity of the specimens as a function of SCC damage. The results show an increase in the measured acoustic nonlinearity in the early stages of SCC, indicating the feasibility of using this nonlinear ultrasonic method to detect the initiation of SCC in carbon steels.  相似文献   

5.
6.
Passivity breakdown and stress corrosion cracking of stainless steel   总被引:1,自引:0,他引:1  
Passivity breakdown of stainless steel is an important initial process for starting stress corrosion cracking. It was found that small amount of impurities in environments affects the initiation process, but do not affect the propagation process of SCC. The environmental effect on the initiation process is rationally explained by introducing “bound water model” of passive film and HSAB (Hard and Soft Acid and Base) rule. Background of the issue including bound water model and HSAB rule was discussed.  相似文献   

7.
The impact of a temperature excursion on the subsequent stress corrosion crack growth at the normal operating temperature has been investigated for 321 stainless steel (UNS32100) and 316L stainless steel (UNS31603) using precracked compact tension specimens. Although the data are preliminary the indication is that once crack growth has initiated in 321 SS at the elevated temperature, 130 °C in this study, the crack growth may be sustained at the lower temperature (40 °C), at least over the exposure time of about 700 h. However, the growth rate of 316L SS at the lower temperature was significantly lower than for 321 SS and tended to zero after 2000 h. For the 316 SS a temperature transient should not impact on structural integrity, provided it is short in duration.  相似文献   

8.
In recent years, investigations into the changes in the microstructure of functional metal materials during their processing have been carried out by many researchers. Therefore, it is required that the change in the material characteristics during processing by a nondestructive evaluation method be evaluated. However, conventional technology has been restricted to a static material characteristic evaluation. For example, a strain gauge has the problem that it can influence the measurement conditions of the tensile test and can only evaluate the position at which the strain gauge is attached. We then tried to develop a non-contact stress measurement system for tensile testing using an EMAT with a Lamb wave as the first step for the material characterization evaluation during mechanical testing. The EMAT measures the propagation time of a Lamb wave between the receiver and a transmitter during the tensile testing. The interval between the transmitter and the receiver of the first set is 10 mm and can move in the direction of the tensile load. In this presentation, the specifications of the measurement system and the evaluation results are reported.  相似文献   

9.
The effects of nitrogen content and the cooling rate on the reformation of austenite in the Gleeble simulated heat-affected zone (HAZ) of 2205 duplex stainless steels (DSSs) were investigated. The variation of stress corrosion cracking (SCC) behavior in the HAZ of 40 wt% CaCl2 solution at 100 °C was also studied. Grain boundary austenite (GBA), Widmanstatten austenite (WA), intergranular austenite (IGA) and partially transformed austenite (PTA) were present in the HAZ. The types and amounts of these reformed austenites varied with the cooling rate and nitrogen content in the DSS. U-bend tests revealed that pitting corrosion and selective dissolution might assist the crack initiation, while the types and amounts of reformed austenite in the HAZ affected the mode of crack propagation. The presence of GBA was found to promote the occurrence of intergranular stress corrosion cracking. WA, IGA and PTA were found to exhibit a beneficial effect on SCC resistance by deviating the crack propagation path.  相似文献   

10.
Scanning vibrating electrode technique (SVET) that is a reliable method for local measuring of electrochemical potential at the sample surface is used to study stress corrosion cracking of 304L stainless steel in 0.1?M NaCl+HCl solution at room temperature. SVET maps showed a periodic emergence and receding as well as a forward mobility of an active anodic front. This behaviour could indicate a step-wise and discontinuous crack propagation mechanism. SEM images revealed the presence of a side crack adjacent to the main crack which confirms the presence of an expanded anodic front in SVET maps.  相似文献   

11.
Since publication of ANSI/NACE MR0175/ISO 15156 in 2003 there has been much debate on the performance of austenitic stainless steels in oil and gas production environments, with researchers recommending relaxation of the ISO 15156 restrictions for this material. This paper describes a recent austenitic stainless steel stress corrosion cracking failure and discusses its implications for the current restrictions of the ISO standard and recently proposed relaxations of these restrictions.  相似文献   

12.
Single crystal 321 stainless steel stress corrosion cracking was studied in a 42 wt.% MgCl2 solution. Cracks propagated macroscopically in the maximum tensile stress plane regardless of the notch orientation with respect to the applied tensile load direction. Some stress corrosion cracks nucleated discontinuously at the intersection of the two slip bands. Most cracks, however, were not related to the slip bands. Cleavage-like fracture was observed, and the river-markings exhibited microshear facets along the {1 1 1} plane. Interaction between the main crack and the discontinuous microcracks increased the calculated stress intensity factor by 17 times and promoted crack coalescence, resulting in mechanical fracture of the ligaments between the cracks.  相似文献   

13.
An investigation has been undertaken to establish the effect of surface preparation method on the susceptibility of a 304 stainless steel to stress corrosion cracking under simulated atmospheric corrosion conditions. MgCl2 was deposited onto four-point bend specimens, which were then placed in a chamber with a relative humidity of 45% and temperature of 60 °C. These test conditions were designed to reflect external exposure of stainless steel components in industrial plant, including nuclear reactor components, situated in a coastal region, but with the severity of the exposure conditions enhanced to allow discrimination of the effect of surface preparation in a short timescale (up to 1500 h). Four surface preparation methods were evaluated: transverse grinding, longitudinal grinding, transverse dressing using an abrasive flap wheel, and transverse milling. For each case, surface topography, surface defect mapping, near-surface microhardness mapping, residual stress and electron back-scattered diffraction measurements were undertaken. Stress corrosion cracks were observed for the ground and milled specimens but not for the dressed specimens, with cracks apparently originating at corrosion pits. The density of cracks increased in the order: transverse ground, milled and longitudinal ground, with the cracks notably much smaller in length for the transverse ground condition. The propensity for cracking could be linked to the high residual stress and apparent nanocrystalline microstructure at the surface. There was a greater propensity for pitting to initiate at local defect sites on the surface (laps, deeper grooves). However, the tendency was not overwhelming, suggesting that other factors such as more general roughness or the distribution of MnS inclusions had an influence, perhaps reflecting the severity of the environment.  相似文献   

14.
采用高温高压慢应变速率拉伸试验方法(SSRT),研究了在除氧环境下不同浓度氯离子对304L焊接件在模拟一回路高温高压硼锂水介质中氯致应力腐蚀开裂的影响。结果表明:当氯离子浓度为1 mg/L时,其各项力学性能指标与惰性氮气空白样一致,表明在低浓度氯离子除氧条件下,304L焊接件没有应力腐蚀敏感性。随着氯离子含量(1~50mg/L)的增加,304L焊接件应力腐蚀敏感指数变化呈增加趋势。断口侧面没有观察到明显的裂纹,氯离子浓度越低,断口缩颈现象越明显,表明主要是机械断裂。氯离子浓度较高时,棱角部分出现微裂纹源,可能与棱角部分应力更为集中相关。所有样品的断裂位置都在焊缝和热影响区,在焊缝和热影响区发生了巨大的形变,离断口越近,变形越严重。焊接部位是304L堆内构件中薄弱环节,应该成为应力腐蚀开裂和其他性能检测的重点部位。  相似文献   

15.
This work focuses on the study of noise (EN) in the coupling current that is generated during stress corrosion cracking (SCC) of sensitized Type 304 stainless steel (304SS) in thiosulphate solution. The noise was acquired under open circuit conditions using a zero-resistance ammeter to monitor the coupling current that flows from the crack in an insulated compact tension (CT) specimen to external cathodes. The time record is transformed to the frequency domain using a fast Fourier transform algorithm and wavelet analysis; the wavelet analysis proved to be of greater facility in determining the frequency values at which the fracture events occur. The mechanism proposed to explain the behaviour of the noise is hydrogen-induced fracture (HIF), in which the entry of hydrogen into the matrix ahead of the crack tip is catalyzed by adsorbed sulfur. Additionally, it was found that a 0.5 M sodium thiosulphate solution is capable of initiating and propagating the localized corrosion process under unloaded conditions and that the effect of the load is, simply, to increase the rate with which the process occurs.  相似文献   

16.
In one of the gas processing facilities in Abu Dhabi, UAE; a case of 316L stainless steel material failure occurred in the fractionating column due to stress cracking corrosion twice in a cycle of less than 2 years. This paper studies the stress corrosion cracking behavior of the 316L stainless steel in an accelerated corrosion environment and compares it with a higher corrosion resistant nickel alloy (Inconel 625). The experimental work was designed according to ASTM G36 standard, the samples were immersed in a boiling magnesium chloride medium which provided the accelerated corrosion environment and the tested samples were shaped into U‐bend specimens as they underwent both plastic and elastic stresses. The specimens were then tested to determine the time required for cracks to initiate. The results of the experimental work showed that the main mode of failure was stress corrosion cracking initiated by the proven presence of chlorides, hydrogen sulfide, and water at elevated temperatures. Inconel 625 samples placed in the controlled environment showed better corrosion resistance as it took them an average of 56 days to initiate cracks, whereas it took an average of 24 days to initiate cracks in the stainless steel 316L samples. The scanning electron microscopy (SEM) micrographs showed that the cracks in the stainless steel 316L samples were longer, wider, and deeper compared to the cracks of Inconel 625.  相似文献   

17.
Intergranular stress‐corrosion cracking (IGSCC) on a sensitised type AISI 304 stainless steel specimen was monitored simultaneously by acoustic emission, electrochemical noise, elongation measurements and a digital imaging system. The specimen was exposed to an aqueous sodium thiosulphate solution in combination with a constant load. It was established that before the final fracture two large cracks and numerous smaller cracks had developed. Detection and characterisation of the stress‐corrosion processes which generated these cracks are discussed. The results confirm and generalise previously established correlations between various parameters obtained by the implemented characterisation methods and IGSCC processes. Additionally, a clear differentiation between crack related and crack non‐related AE signals was made based on an analysis of the AE signals. The relationship between the crack lengths calculated by means of digital image correlation analysis and the electrochemical current noise was also established.  相似文献   

18.
Stress corrosion cracking behaviour of ferritic stainless steels with copper and molybdenum additions in 42?wt-% boiling magnesium chloride at 143?±?1°C has been determined. The nature of the corrosion products was analysed by X-ray photoelectron spectroscopy (XPS). XPS results show that the presence of Fe(0), Cr(0) and Mo(0) unoxidised states on the crack tips of (copper+molybdenum) addition ferritic stainless steel cannot form the stable passive film and causes the further corrosion in the chloride solution. The addition of both copper and molybdenum to 19% Cr ferritic stainless steel causes stress corrosion cracking. The susceptibility to stress corrosion cracking increases with the growth of ε-copper precipitates, and the fracture mode changes from transgranular to intergranular with the increasing aging time. Stress corrosion cracking initiates from pitting of ε-copper phases, then propagates to molybdenum atoms, and finally propagates to the other ε-copper precipitations perpendicular to the direction of maximum strain.  相似文献   

19.
20.
通过合金成分设计,轧制、热处理工艺的探索,开发了低合金高强度海洋软管用钢,其屈服强度大于600 MPa且满足抗氢脆、抗氢致开裂、抗应力腐蚀开裂性能,并通过全浸腐蚀实验对该钢的海水腐蚀行为进行了研究。结果表明,采用低C、低Mn并复合添加耐蚀元素Cr、Mo和采用合理的热轧、冷轧、调质处理工艺,可获得满足抗应力腐蚀开裂性能的600 MPa级高强钢。耐蚀元素的添加使实验钢具有良好的耐海水腐蚀能力,腐蚀稳定状态下的平均年腐蚀速率为0.11 mm/a。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号