首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Heterogeneous transesterification of waste cooking palm oil (WCPO) to biodiesel over Sr/ZrO2 catalyst and the optimization of the process have been investigated. Response surface methodology (RSM) was employed to study the relationships of methanol to oil molar ratio, catalyst loading, reaction time, and reaction temperature on methyl ester yield and free fatty acid conversion. The experiments were designed using central composite by applying 24 full factorial designs with two centre points. Transesterification of WCPO produced 79.7% maximum methyl ester yield at the optimum methanol to oil molar ratio = 29:1, catalyst loading = 2.7 wt%, reaction time = 87 min and reaction temperature = 115.5 °C.  相似文献   

2.
Biodiesel preparation from Jatropha oil catalyzed by KF/Red mud (KF/RM) was studied. The optimum values of parameters for preparation of Jatropha oil biodiesel were obtained. The conversion rate of transesterification reached 92.2% under the optimum conditions, and the used KF/RM could be regenerated. Catalyst characterization showed that KOH and KFeF4 were produced in KF/RM catalyst, which was crucial for the transesterification of Jatropha oil with methanol. Red mud was a good support to prepare KF-loaded catalyst, and prepared KF/RM was an excellent catalyst for biodiesel synthesis from Jatropha oil via transesterification reaction.  相似文献   

3.
The transesterification of palm oil to methyl esters (biodiesel) was studied using KOH loaded on Al2O3 and NaY zeolite supports as heterogeneous catalysts. Reaction parameters such as reaction time, wt% KOH loading, molar ratio of oil to methanol, and amount of catalyst were optimized for the production of biodiesel. The 25 wt% KOH/Al2O3 and 10 wt% KOH/NaY catalysts are suggested here to be the best formula due to their biodiesel yield of 91.07% at temperatures below 70 °C within 2–3 h at a 1:15 molar ratio of palm oil to methanol and a catalyst amount of 3–6 wt%. The leaching of potassium species in both spent catalysts was observed. The amount of leached potassium species of the KOH/Al2O3 was somewhat higher compared to that of the KOH/NaY catalyst. The prepared catalysts were characterized by using several techniques such as XRD, BET, TPD, and XRF.  相似文献   

4.
A simple method was developed for biodiesel production from non-edible Jatropha oil which contains high free fatty acid using a bifunctional acid–base catalyst. The acid–base catalyst comprising CaO and La2O3 mixed metal oxides with various Ca/La atomic ratios were synthesized via co-precipitation method. The effects of Ca/La compositions on the surface area, acidity–basicity and transesterification activity were investigated. Integrated metal–metal oxide between Ca and La enhanced the catalytic activity due to well dispersion of CaO on composite surface and thus, increased the surface acidic and basic sites as compared to that of bulk CaO and La2O3 metal oxide. Furthermore, the transesterification reactions resulted that the catalytic activity of CaO–La2O3 series were increased with Ca/La atomic ratio to 8.0, but the stability of binary system decreased by highly saturated of CaO on the catalyst surface at Ca/La atomic ratio of 10.0. The highest biodiesel yield (98.76%) was achieved under transesterification condition of 160 °C, 3 h, 25 methanol/oil molar ratio and 3 wt.%. In addition, the stability of CaO–La2O3 binary system was studied. In this study, Ca–La binary system is stable even after four cycles with negligible leaching of Ca2+ ion in the reaction medium.  相似文献   

5.
Calcium-based mixed oxides catalysts (CaMgO and CaZnO) have been investigated for the transesterification of Jatropha curcas oil (JCO) with methanol, in order to evaluate their potential as heterogeneous catalysts for biodiesel production. Both CaMgO and CaZnO catalysts were prepared by coprecipitation method of the corresponding mixed metal nitrate solution in the presence of a soluble carbonate salt at ∼ pH 8-9. The catalysts were characterized by X-ray diffraction (XRD), temperature programmed desorption of CO2 (CO2-TPD), scanning electron microscopy (SEM) and N2 adsorption (BET). The conversion of JCO by CaMgO and CaZnO were studied and compared with calcium oxide (CaO), magnesium oxide (MgO) and zinc oxide (ZnO) catalysts. Both CaMgO and CaZnO catalysts showed high activity as CaO and were easily separated from the product. CaMgO was found more active than CaZnO in the transesterification of JCO with methanol. Under the suitable transesterification conditions at 338 K (catalyst amount = 4 wt. %, methanol/oil molar ratio = 15, reaction time = 6 h), the JCO conversion of more than 80% can be achieved over CaMgO and CaZnO catalysts. Even though CaO gave the highest activity, the conversion of JCO decreased significantly after reused for forth run whereas the conversion was only slightly lowered for CaMgO and CaZnO after sixth run.  相似文献   

6.
This work focuses on the development of heterogeneous catalysts for biodiesel production from high free fatty acid (FFA) containing Jatropha curcas oil (JCO). Solid base and acid catalysts were prepared and tested for transesterification in a batch reactor under mild reaction conditions. Mixtures of solid base and acid catalysts were also tested for single-step simultaneous esterification and transesterification. More soap formation was found to be the main problem for calcium oxide (CaO) and lithium doped calcium oxide (Li-CaO) catalysts during the reaction of jatropha oil and methanol than for the rapeseed oil (RSO). CaO with Li doping showed increased conversion to biodiesel than bare CaO as a catalyst. La2O3/ZnO, La2O3/Al2O3 and La0.1Ca0.9MnO3 catalysts were also tested and among them La2O3-ZnO showed higher activity. Mixture of solid base catalysts (CaO and Li-CaO) and solid acid catalyst (Fe2(SO4)3) were found to give complete conversion to biodiesel in a single-step simultaneous esterification and transesterification process.  相似文献   

7.
A novel polymer-based alkaline catalyst was prepared with sodium silicate (Na2SiO3) and N-[(2-Hydroxy-3-trimethylammonium) propyl] chitosan chloride (HTCC), interlinked by epichlorohydrin (ECH), for biodiesel production. The structure and properties of the catalyst were studied by Fourier transform infrared spectroscopy, thermogravimetry-mass spectrometry and transmission electron microscopy. The effects of the variables on the transesterificaton of soybean oil to biodiesel were investigated. It is found that Na2SiO3 was bridged on HTCC chains through ECH and well dispersed in HTCC matrix in nano size. The transesterification conversion reached at 97.0% under the reaction conditions of methanol/oil molar ratio of 6:1, catalyst loading of 4.0 wt.% at 55 °C for 60 min. After the second run, the catalytic activity kept stable, which was contributed to the stability and dispersion of Na2SiO3 in the catalyst.  相似文献   

8.
In this study, a strong acidic‐type cation exchange resin was used in the transesterification of corn oil to fatty acid methyl esters (FAME). The gel‐type cation exchange resin (Purolite‐PD206) was used in H+ and Na+ forms to utilize ion‐exchange resin as effective heterogeneous catalyst in the production of biodiesel. Effect of ionic forms of ion exchange resin on free fatty acid (FFA) conversion and composition was investigated by using different amounts of ion exchange resin (12, 16, and 20 wt%), various mole ratios of methanol to oil (1:6, 1:12, and 1:18 mol/mol), reaction temperatures (63, 65, and 67°C), and reaction time (24, 36, and 48 h) during transesterification reaction. The highest FFA conversions of 73.5% and 79.45% were obtained at conditions of 20 wt% of catalyst, 65°C of reaction temperature, 18:1 as methanol to oil ratio, and 48 h of reaction time for H+ and Na+ forms of ion exchange resin, respectively. These results were obtained from regression equations established by using analysis of variance (ANOVA) model according to the experimental results of selected parameters. Gas chromatography analysis revealed that FAME is mainly composed of C16:0 (palmitic), C18:1 (oleic), and C18:2 (linoleic) acids of methyl ester.  相似文献   

9.
The present work illustrates the parametric effects on biodiesel production from Hevea brasiliensis oil (HBO) using flamboyant pods derived carbonaceous heterogeneous catalyst. Activated carbon (AC) was prepared maintaining 500 °C for 1 h and steam activated at optimised values of activation time 1.5 h and temperature 350 °C. Carbonaceous support was impregnated with KOH at different AC/KOH ratios. The transesterification process was optimized and significant parameters affecting the biodiesel yield was identified by Taguchi method considering four parameters viz. reaction time, reaction temperature, methanol to oil ratio and catalyst loading. The physicochemical properties of Hevea brasiliensis methyl ester (HBME) were examined experimentally at optimised condition and found to meet the global American standards for testing and materials (ASTM). The optimum condition observed to yield 89.81% of biodiesel were: reaction time 60 min, reaction temperature 55 °C, catalyst loading 3.5wt% and methanol to oil ratio 15:1. Contribution factor revealed that among four parameters considered, catalyst loading and methanol to oil ratio have more prominent effect on biodiesel yield. The cost for preparing carbonaceous catalyst support was estimated and observed to be fairly impressive. Thus, Hevea brasiliensis oil (HBO) could be considered as suitable feedstock and flamboyant pods derived carbon as effective catalyst for production of biodiesel.  相似文献   

10.
The use of MgO impregnated with KOH as heterogeneous catalysts for the transesterification of mutton fat with methanol has been evaluated. The mutton fat (fat) with methanol (1:22 M ratio) at 65 °C showed > 98% conversion to biodiesel with 4 wt% of MgO–KOH-201 (MgO impregnated with 20 wt% of KOH) in 20 min. The reaction conditions optimized were; the amount of KOH impregnation (5–20 wt%), the amount of catalyst (1.5–4 wt%, catalyst/fat), the reaction temperature (45–65 °C), fat to methanol molar ratio (1:11–1:22) and the effect of addition of water/oleic acid/palmitic acid (upto 1 wt%). Although, transesterification of fresh fat (moisture content 0.02 wt% and free fatty acids 0.002 wt%) with methanol in the presence of KOH (homogenous catalyst) resulted in the complete conversion to biodiesel, but in the presence of additional 1 wt% of either free fatty acid or moisture content, formation of soap was observed. The MgO–KOH-20 catalyst was found to tolerate additional 1 wt% of either the moisture or FFAs in the fat.  相似文献   

11.
Novel mixed metal oxide catalyst Ca3.5xZr0.5yAlxO3 was synthesized through the coprecipitation of metal hydroxides. The textural, morphological, and surface properties of the synthesized catalysts were characterized via Brunauer–Emmett–Teller method, X-ray diffraction, scanning electron microscopy, Fourier transform infrared spectroscopy, and energy-dispersive X-ray spectroscopy. The catalytic performance of the as-synthesized catalyst series was evaluated during the transesterification of cooking palm oil with methanol to produce fatty acid methyl esters (FAME). The influence of different parameters, including the calcination temperature (300–700 °C), methanol to oil molar ratio (6:1–25:1), catalyst amount (0.5–6.5 wt%), reaction time (0.5–12 h) and temperature (70–180 °C), on the process was thoroughly investigated. The metal oxide composite catalyst with a Ca:Zr ratio of 7:1 showed good catalytic activity toward methyl esters. Over 87% of FAME content was obtained when the methanol to oil molar ratio was 12:1, reaction temperature 150 °C, reaction time 5 h and 2.5 wt% of catalyst loading. The catalyst could also be reused for over four cycles.  相似文献   

12.
The depletion of fossil fuels has caused the price of petroleum to rise remarkably and created need for alternative energy such as biodiesel. In the present study, the biodiesel was produced from castor oil using ferromagnetic zinc oxide nanocomposite as heterogeneous catalyst for transesterification reaction. Single phase of nanocatalyst were confirmed by X-Ray Diffraction analysis. The spherical shape of the aggregated nanocatalyst was observed in Scanning Electron Microscopy. Magnetic properties were analysed using vibrating sample magnetometer. Atomic Force Microscopic analysis revealed the larger surface area and roughness of nanocatalyst. The biodiesel yield of 91% (w/w) was obtained in 50 min at 55 °C with 14 wt % catalyst loading and 12:1 methanol/oil ratio and was confirmed by Gas chromatograph with Mass Spectrometer. The result showed that the iron (II) doped ZnO nanocatalyst is a promising catalyst for the production of biodiesel via heterogeneous catalytic transesterification under milder reaction conditions.  相似文献   

13.
The present work reports the production of biodiesel from Silurus triostegus Heckel fish oil (STFO) through alkaline-catalyzed transesterification by using potassium hydroxide (KOH) as an alkaline catalyst with methanol. Chemical and physical properties of the extracted oil were determined. It was found that STFO has a low acid value (1.90 mg KOH/g oil); hence no pre-treatment such as acid esterification is required to produce the biodiesel. The influence of the experimental parameters such as KOH concentration (0.25–1.0% w/w of oil), methanol to oil molar ratio (3:1, 6:1, 9:1 and 12:1), reaction temperature (32, 45 and 60 °C), reaction duration (30, 60, 90 and 120 min), type of the catalyst (potassium or sodium hydroxide) and step multiplicity (single- and two-step transesterification) on the yield of the biodiesel were investigated. The maximum biodiesel yield (96%) was obtained under the optimized parameters of the transesterification (KOH 0.50% w/w, 6:1 methanol to oil, at 32 °C for 60 min). The properties of the produced biodiesel were found to conform with the ASTM standard, indicating its suitability for internal combustion engines. Blending of the produced biodiesel with petro diesel with various volume percentages was investigated as well.  相似文献   

14.
《Biomass & bioenergy》2007,31(8):569-575
Response surface methodology (RSM) based on central composite rotatable design (CCRD) was used to optimize the three important reaction variables—methanol quantity (M), acid concentration (C) and reaction time (T) for reduction of free fatty acid (FFA) content of the oil to around 1% as compared to methanol quantity (M′) and reaction time (T′) and for carrying out transesterification of the pretreated oil. Using RSM, quadratic polynomial equations were obtained for predicting acid value and transesterification. Verification experiments confirmed the validity of both the predicted models. The optimum combination for reducing the FFA of Jatropha curcas oil from 14% to less than 1% was found to be 1.43% v/v H2SO4 acid catalyst, 0.28 v/v methanol-to-oil ratio and 88-min reaction time at a reaction temperature of 60 °C as compared to 0.16 v/v methanol-to-pretreated oil ratio and 24 min of reaction time at a reaction temperature of 60 °C for producing biodiesel. This process gave an average yield of biodiesel more than 99%. The fuel properties of jatropha biodiesel so obtained were found to be comparable to those of diesel and confirming to the American and European standards.  相似文献   

15.
A comparative study of vegetable oil methyl esters (biodiesels)   总被引:1,自引:0,他引:1  
In the present study, rubber seed oil, coconut oil and palm kernel oil, which are locally available especially in Kerala (India), are chosen and their transesterification processes have been investigated. The various process variables like temperature, catalyst concentration, amount of methanol and reaction time were optimized. Biodiesel from rubber seed oil (with high free fatty acid) was produced by employing two-step pretreatment process (acid esterification) to reduce acid value from 48 to 1.72 mg KOH/g with 0.40 and 0.35 v/v methanol-oil ratio and 1.0% v/v H2SO4 as catalyst at a temperature of 63(±2) °C with 1 h reaction time followed by transesterification using methanol-oil ratio of 0.30 v/v, 0.5 w/v KOH as alkaline catalyst at 55(±2) °C with 40 min reaction time to yield 98-99% biodiesel. Coconut oil and palm oil, being edible oils, transesterification with 0.25 v/v methanol-oil ratio, 0.50% w/v KOH as at 58(±2) °C, 20 min reaction time for coconut oil and 0.25% v/v methanol-oil ratio, 0.50% w/v KOH as alkaline catalyst at 60(±2) °C for palm kernel oil will convert them to 98-99% biodiesel. The brake thermal efficiency of palm oil biodiesel was higher with lower brake specific fuel consumption, but rubber seed oil biodiesel(ROB) showed less emission (CO and NOx) compared to other biodiesels.  相似文献   

16.
Crude Pongamia pinnata oil was subjected to a transesterification reaction with a calcium methoxide (Ca(OCH3)2) catalyst in subcritical methanol to obtain biodiesel. The variables affecting the methyl ester conversion were investigated. The obtained results were compared with non-catalyst and two-step reaction runs. The test results showed that the catalyst could improve the methyl ester conversion of biodiesel in subcritical methanol. A conversion rate of 99.50% was achieved with a 50:1 methanol-to-oil molar ratio, 1.0 %wt catalyst, and 2.0 h reaction time at 175°C. In addition, the important fuel properties of the biodiesel satisfied the biodiesel standards.  相似文献   

17.
In this study, a pilot scale of 100 t/year biodiesel production system, mainly consisting of a fixed-bed and a down-stream plug-flow reactors, was setup to test different feedstock oils, especially a kind of high-acidified oil, trap grease, for their feasibility as biodiesel feedstock in China. The tested oils include three kinds of typical oil from Guangdong Province, China: rapeseed oil, Chinese wood oil, and trap grease. At the same time the optimum residence time for a plug-flow reactor to perform transesterification reaction was investigated in this study. At the temperature of 65 °C, methanol/oil molar ratio of 6:1 and KOH load of 1.2 wt% of oil, the optimum residence time was found to be 19 min. A type of ion-exchange resin was used to fill in the fixed-bed reactor and used as the esterification catalyst for pretreating on the high-acidified oil. For the fresh catalyst, the acid value of trap grease could be reduced from 114 mg KOH/g to about 2 mg KOH/g after 13 h at temperature 75 °C, catalyst load of 15 wt% of oil, methanol addition of 20 wt% of oil. The lifetime test for the catalyst indicated that its life is over 30 days. The quality of biodiesel derived from three feedstock oils is compared with newly published China BD100 standard of GB/T20828-2007. A comparison of the results reveals that the biodiesel generated through this system could satisfactorily meet China BD100 standard. It indicates that the designed process in this system has a good adaptability for different kinds of oil.  相似文献   

18.
The waste Capiz shell was utilized as raw material for catalyst production for biodiesel preparation. During calcination process, the calcium carbonate content in the waste capiz shell was converted to CaO. This calcium oxide was used as catalyst for transesterification reaction between palm oil and methanol to produce biodiesel. The biodiesel preparation was conducted under the following conditions: the mole ration between methanol and palm oil was 8:1, stirring speed was 700 rpm, and reaction temperature was 60 °C for 4, 5, and 6 h reaction time. The amount of catalyst was varied at 1, 2, 3, 4, and 5 wt %. The maximum yield of biodiesel was 93 ± 2.2%, obtained at 6 h of reaction time and 3 wt % of amount of catalyst. In order to examine the reusability of catalyst developed from waste of capiz (Amusium cristatum) shell, three transesterification reaction cycles were also performed.  相似文献   

19.
A solid base catalyst Na2SiO3 was prepared by microwave heating. The catalyst was used to catalyze the transesterification reactions for the production of fatty acid methyl esters from cottonseed oil. The optimum conditions of the catalyst preparation and transesterification reactions were investigated by orthogonal experiments. The catalyst with the highest catalytic activity was obtained using microwave power of 640 W, microwave irradiation time of 6 min, catalyst particle size of 60 mesh. The catalyst was characterized with X-ray diffraction (XRD), scanning electron micrographs (SEM), and the results showed the catalyst Na2SiO3 has good microstructure. Under the transesterification conditions of methanol/oil molar ratio of 6:1, catalyst dosage of 5%, reaction temperature of 65 °C, reaction time of 100 min and stirring speed of 400 rpm, the yield of methyl esters was 97.6%. The lifetime of the solid base catalysts by different process methods (microwave heating and conventional electric heating) was no significant differences, but microwave heating may be more economical than conventional electric heating.  相似文献   

20.
Lithium impregnated calcium oxide has been prepared by wet impregnation method in nano particle form as supported by powder X-ray diffraction and transmission electron microscopy. Basic strength of the same was measured by Hammett indicators. Calcium oxide impregnated with 1.75 wt% of lithium was used as solid catalyst for the transesterification karanja and jatropha oil, containing 3.4 and 8.3 wt% of free fatty acids, respectively. The reaction parameters, viz., reaction temperature, alcohol to oil molar ratio, free fatty acid contents, amount of catalyst and amount of impregnated lithium ion in calcium oxide support, have been studied to establish the most suitable condition for the transesterification reaction. The complete transesterification of karanja and jatropha oils was achieved in 1 and 2 h, respectively, at 65 °C, utilizing 12:1 molar ratio of methanol to oil and 5 wt% (catalyst/oil, w/w) of catalyst. Few physicochemical properties of the prepared biodiesel samples have been studied and compared with standard values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号