首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 1 毫秒
1.
Bio-oil derived via slow pyrolysis process of two indigenous Australian tree species, red gum (Eucalyptus camaldulensis) from the basin of Murray, Victoria, and blue gum (Eucalyptus globulus) wood from the region of Mount Gambier, South Australia was blended with ethanol and burned in a circular jet spray at atmospheric pressure. Bio-oil flames were shorter, wider and brighter than diesel fuel flames at the same conditions. Adding of flammable polar additives (e.g. ethanol) to bio-oil improved some of the undesired properties of the fuel such as poor atomisation, low calorific value, and high NOx emission from the flame. Nevertheless, adding of ethanol should be carried out with caution since it leads to a reduction of the heat flux from the flame. Changing the concentration of flammable polar additives in bio-oil can be an optimising factor in achieving the proper balance between the best spray formation and the maximal heat flux from the flame.  相似文献   

2.
《能源学会志》2020,93(4):1313-1323
In this work, the solar catalytic pyrolysis of Spirulina platensis microalgae using hydrotalcite as a catalyst was studied to improve the yield and quality of the bio-oil obtained from the algae. The effects of biomass loading, reaction time, and catalyst percentage on the product distribution and bio-oil composition were evaluated. The desirability function was used to identify the pyrolysis conditions that maximize the bio-oil yield and its hydrocarbon content. The experimental results indicated that the catalytic pyrolysis of Spirulina platensis produced considerable solid product content, and high liquid yields were reached in some tests favored by the catalyst presence. The hydrotalcite contributed to increasing the hydrocarbon formation in the bio-oil at lower reaction times, demonstrating the great performance of this catalyst for microalgae pyrolysis. At the optimal conditions, a bio-oil yield of 35.94% with 21.71% hydrocarbon content was achieved.  相似文献   

3.
This study examined bio-oil and bio-char fuel produced from Spirulina Sp. by slow pyrolysis. A thermogravimetric analyser (TGA) was used to investigate the pyrolytic characteristics and essential components of algae. It was found that the temperature for the maximum degradation, 322 °C, is lower than that of other biomass. With our fixed-bed reactor, 125 g of dried Spirulina Sp. algae was fed under a nitrogen atmosphere until the temperature reached a set temperature between 450 and 600 °C. It was found that the suitable temperature to obtain bio-char and bio-oil were at approximately 500 and 550 °C respectively. The bio-oil components were identified by a gas chromatography/mass spectrometry (GC–MS). The saturated functional carbon of the bio-oil was in a range of heavy naphtha, kerosene and diesel oil. The energy consumption ratio (ECR) of bio-oil and bio-char was calculated, and the net energy output was positive. The ECR had an average value of 0.49.  相似文献   

4.
Apricot pulps was pyrolyzed in a fixed-bed reactor under different pyrolysis conditions to determine the role of final temperature, sweeping gas flow rate and steam velocity on the product yields and liquid product composition with a heating rate of 5 °C/min. Final temperature range studied was between 300 and 700 °C and the highest liquid product yield was obtained at 550 °C. Liquid product yield increased significantly under nitrogen and steam atmospheres. For the optimum conditions, pyrolysis of peach pulp was furthermore studied. Liquid products obtained under the most suitable conditions were characterized by FTIR and 1H-NMR. In addition, gas chromatography/mass spectrophotometer was achieved on all pyrolysis oils. Characterization showed that bio-oil could be a potential source for synthetic fuels and chemical feedstock.  相似文献   

5.
Economic tradeoff between biochar and bio-oil production via pyrolysis   总被引:1,自引:0,他引:1  
This paper examines some of the economic tradeoffs in the joint production of biochar and bio-oil from cellulosic biomass. The pyrolysis process can be performed at different final temperatures, and with different heating rates. While most carbonization technologies operating at low heating rates (large biomass particles) result in higher yields of charcoal, fast pyrolysis (which processes small biomass particles) is the preferred technology to produce bio-oils. Varying operational and design parameters can change the relative quantity and quality of biochar and bio-oil produced for a given feedstock. These changes in quantity and quality of both products affect the potential revenue from their production and sale. We estimate quadratic production functions for biochar and bio-oil. The results are then used to calculate a product transformation curve that characterizes the yields of bio-oil and biochar that can be produced for a given amount of feedstock, movement along the curve corresponds to changes in temperatures, and it can be used to infer optimal pyrolysis temperature settings for a given ratio of biochar and bio-oil prices.  相似文献   

6.
In the present study, reduced pressure distillation was performed to obtain distilled bio-oil from fast pyrolysis bio-oil. The experiments were completed at temperature 80 °C with a residual pressure of 15 mmHg. The distilled bio-oil yields of 61 wt% from reduced pressure distillation of fast pyrolysis bio-oil were obtained. The oxygen contents of the distilled bio-oil is 9.2 wt% and the distilled bio-oil has lower content of oxygen than the fast pyrolysis bio-oil. For this reason, compared with the fast pyrolysis bio-oil, the distilled bio-oil has higher heating value, lower corrosivity and better stability. The heating value of distilled bio-oil is 34.2 MJ/kg, which is about 2 times of that of fast pyrolysis bio-oil. It is found that the distilled bio-oil stored at 60 °C results in a weight loss of about 0.3% for mild steel and the distilled bio-oil’s viscosity hardly increases during storage. These properties of distilled bio-oil make it more suitable for fuel oil use or as a source of chemicals than fast pyrolysis bio-oil.  相似文献   

7.
The production of bio-oil by pyrolysis with a high heating rate (500 K s−1) and hydrothermal liquefaction (HTL) of Chlamydomonas reinhardtii was compared. HTL led to bio-oil yield decreasing from 67% mass fraction at 220 °C to 59% mass fraction at 310 °C whereas the bio-oil yield increased from 53% mass fraction at 400 °C to 60% mass fraction at 550 °C for pyrolysis. Energy ratios (energy produced in the form of bio-oil divided by the energy content of the initial microalgae) between 66% at 220 °C and 90% at 310 °C in HTL were obtained whereas it was in the range 73–83% at 400–550 °C for pyrolysis. The Higher Heating Value of the HTL bio-oil was increasing with the temperature while it was constant for pyrolysis. Microalgae cultivation in aqueous phase produced by HTL was also investigated and showed promising results.  相似文献   

8.
This study investigated three different types of catalysts: Ni/HMS-ZSM5, Fe/HMS-ZSM5, and Ce/HMS-ZSM5 in the thermochemical decomposition of green microalgae Spirulina (Arthrospira) plantensis. First, non-catalytic pyrolysis tests were conducted in a temperature ranges of 400–700 °C in a dual-bed pyrolysis reactor. The optimum temperature for maximized liquid yield was determined as 500 °C. Then, the influence of acid washing on bio-products upgrading was studied at the optimum temperature. Compared to the product yields from the pyrolysis of raw spirulina, a higher bio-oil yield (from 34.488 to 37.778 %wt.) and a lower bio-char yield (from 37 to 35 %wt.) were observed for pretreated spirulina, indicating that pretreatment promoted the formation of bio-oil, while it inhibited the formation of biochar from biomass pyrolysis. Finally, catalytic pyrolysis experiments of pretreated-spirulina resulted that Fe as an active phase in catalyst exhibited excellent catalytic activity, toward producing hydrocarbons and the highest hydrogen yield (3.81 mmol/gr spirulina).  相似文献   

9.
The pyrolysis characteristics of construction waste wood were investigated for conversion into renewable liquid fuels. The activation energy of pyrolysis derived from thermogravimetric analysis increased gradually with temperature, from 149.41 kJ/mol to 590.22 kJ/mol, as the decomposition of cellulose and hemicellulose was completed and only lignin remained to be decomposed slowly. The yield and properties of pyrolysis oil were studied using two types of reactors, a batch reactor and a fluidized-bed reactor, for a temperature range of 400–550 °C. While both reactors revealed the maximum oil yield at 500 °C, the fluidized-bed reactor consistently gave larger and less temperature-dependent oil yields than the batch reactor. This type of reactor also reduced the moisture content of the oil and improved the oil quality by minimizing the secondary condensation and dehydration. The oil from the fluidized-bed reactor resulted in a larger phenolic content than from the batch reactor, indicating more effective decomposition of lignin. The catalytic pyrolysis over HZSM-5 in the batch reactor increased the proportion of light phenolics and aromatics, which was helpful in upgrading the oil quality.  相似文献   

10.
In this work palm shell waste was pyrolyzed to produces bio-oil. The effects of several parameters on the pyrolysis efficiency were tested to identify the optimal bio-oil production conditions. The tested parameters include temperature, N2 flow rate, feed-stock particle size, and reaction time. The experiments were conducted using a fix-bed reactor. The efficient response surface methodology (RSM), with a central composite design (CCD), were used for modeling and optimization the process parameters. The results showed that the second-order polynomial equation explains adequately the non-linear nature of the modeled response. An R2 value of 0.9337 indicates a sufficient adjustment of the model with the experimental data. The optimal conditions found to be at the temperature of 500 °C, N2 flow rate of 2 L/min, particle size of 2 mm and reaction time of 60 min and yield of bio-oil was approximately obtained 46.4 wt %. In addition, Fourier Transform infra-red (FT-IR) spectroscopy and gas chromatography/mass spectrometry (GC-MS) were used to characterize the gained bio-oil under the optimum condition.  相似文献   

11.
《能源学会志》2020,93(2):811-821
Bio-oil is a multicomponent mixture of more than 400 types of organic compounds, with high water content. Fractionation of bio-oil may be a more efficient approach for primary separation of bio-oil. In this work, to better understand the effect of fractional condensers on bio-oil yield, physicochemical characteristics, compounds distribution and phenols selection during biomass fast pyrolysis process, a semi-automatic controlled fluidized bed reactor biomass fast pyrolysis system with four-stage condensers was developed. Average temperatures of Condensers 1, 2, 3, 4 were 32.39 °C, 26.74 °C, 24.06 °C and 23.68 °C, respectively. And the bio-oil yields of Condenser 1, 2, 3, and 4 were 26.82%, 7.31%, 1.48% and 9.69%, respectively. Bio-oil collected from Condenser 4 had the lowest water content (9.68 wt%), the lowest acidity (pH = 3.67), and the highest HHV (29.2 MJ/kg). The highest relative contents of compounds collected from Condenser 1, 2, 3 and 4 were 1-(4-hydroxy-3-methoxyphenyl)-2-Propanone (6.95%), trans-Isoeugenol (6.63%), Creosol (5.28%), and trans-Isoeugenol (6.69%), respectively. Fractional condensers affected the compounds distribution, but it has a stronger effect on relative heavy compounds (molar mass > 250) and a weaker effect on relative light compounds (molar mass < 200). Fractional condensers were more conducive to the selection of phenols with relative yield of more than 30%. Phenols, acids and furfurans tended to distribute at higher temperature, while alcohols, ethers and hydrocarbons tended to distribute at relative lower temperature, but the difference was small. The research has provided a reference for the production of bio-oil.  相似文献   

12.
This paper presents a non-stoichiometric and thermodynamic model for steam reforming of Imperata cylindrica bio-oil for biohydrogen production. Thermodynamic analyses of major bio-oil components such as formic acid, propanoic acid, oleic acid, hexadecanoic acid and octanol produced from fast pyrolysis of I. cylindrica was examined. Sensitivity analyses of the operating conditions; temperature (100–1000 °C), pressure (1–10 atm) and steam to fuel ratio (1–10) were determined. The results showed an increase in biohydrogen yield with increasing temperature although the effect of pressure was negligible. Furthermore, increase in steam to fuel ratio favoured biohydrogen production. Maximum yield of 60 ± 10% at 500–810 °C temperature range and steam to fuel ratio 5–9 was obtained for formic acid, propanoic acid and octanol. The heavier components hexadecanoic and oleic acid maximum hydrogen yield are 40% (740 °C and S/F = 9) and 43% (810 °C and S/F = 8) respectively. However, the effect of pressure on biohydrogen yield at the selected reforming temperatures was negligible. Overall, the results of the study demonstrate that the non-stoichiometry and thermodynamic model can successfully predict biohydrogen yield as well as the composition of gas mixtures from the gasification and steam reforming of bio-oil from biomass resources. This will serve as a useful guide for further experimental works and process development.  相似文献   

13.
In this study, the production of bio-oil and activated carbon from sugarcane bagasse and molasses was investigated via pyrolysis and CO2 activation. The pyrolysis process yielded char, bio-oil, and gases in 25.90, 41.11, and 32.99 wt%, respectively. The properties and characteristics of obtained bio-oil are comparable with the proposed specifications of the various grades of pyrolysis oils and could find potential application as fuel or source of a number of valuable chemicals. The activation process with CO2 showed it was possible to obtain activated carbon with surface area up to 900 m2 g−1 over 4.5 h activation time with a predominance of micro- and mesopores. The bagasse-based activated carbon was found to be efficient in comparison to commercial activated carbon in removing molasses color, and might provide a lower-cost alternative adsorbent for use in sugar decolorization in raw sugar refining.  相似文献   

14.
Agriculture residues such as palm shell are one of the biomass categories that can be utilized for conversion to bio-oil by using pyrolysis process. Palm shells were pyrolyzed in a fluidized-bed reactor at 400, 500, 600, 700 and 800 °C with N2 as carrier gas at flow rate 1, 2, 3, 4 and 5 L/min. The objective of the present work is to determine the effects of temperature, flow rate of N2, particle size and reaction time on the optimization of production of renewable bio-oil from palm shell. According to this study the maximum yield of bio-oil (47.3 wt%) can be obtained, working at the medium level for the operation temperature (500 °C) and 2 L/min of N2 flow rate at 60 min reaction time. Temperature is the most important factor, having a significant positive effect on yield product of bio-oil. The oil was characterized by Fourier Transform infra-red (FT-IR) spectroscopy and gas chromatography/mass spectrometry (GC-MS) techniques.  相似文献   

15.
Depleting fossil fuel sources necessitate renewable substitutes for petroleum-based co-products. Fast pyrolysis of biomass generates a hydrocarbon liquid (“bio-oil”) amenable to distillation and/or hydrotreatment into hydrocarbon blendstocks. Biorefineries must add value through parallel generation of co-products. We demonstrated a straightforward conversion of bio-oil distillate bottoms into calcined coke. The solid residue was subjected to calcination at 1200 °C for 1 h under N2 atmosphere. The dry calcined product contained 96–99% carbon, was free from sulfur (<0.05% mass fraction), and contained a mass fraction of 0.2–1.1% ash. XRD confirmed steady increases in crystallite size with both devolatilization and calcination. FTIR spectroscopy indicated a loss of functional groups after calcination, except two broad peaks representing C–C and C–O. Temperature programmed oxidation (TPO) of the bottoms before and after calcination illustrates an increasing structural order via the increasing temperature(s) necessary to oxidize the samples. SEM images reveal bubbly morphologies similar to the industrially-favored sponge coke. The electrical resistivity of calcined coke samples measured to be < 1.6 mΩ-m, which closely falls in line with specifications for carbon anodes. Due to the aforementioned qualities and biomass origin, biorenewable calcined coke is an improved alternative to petroleum coke and can find application in carbon anodes, steel carburization, and graphite synthesis.  相似文献   

16.
Bio-oils usually contain many types of compounds with various chemical properties. A bio-oil sample derived from rice husk through rapid pyrolysis was fractioned using solvent- or solid-extraction techniques based on their various properties. Ultraviolet-visible spectroscopy, three-dimensional excitation-emission matrix (EEM) fluorescence spectroscopy and Fourier transform infrared spectroscopy were used to characterize their various spectral properties for further understanding the characteristics of the bio-oil. Bio-oil mostly contains many aromatic ring components, acidic polar fractions, few weak- and non-polar components. The results all show that the main compounds and functional groups in the various bio-oil fractions were different and depended on the fractionation methods. The compositions of the bio-oil fractions were also analyzed with a gas chromatography/mass spectrometry (GC/MS) method. The consistency of the results obtained from the spectrometric methods with the GC/MS method indicates that the spectrometric methods have a good potential for rapid and effective characterization of bio-oils.  相似文献   

17.
Production and characterization of bio-oil and biochar from rapeseed cake   总被引:5,自引:0,他引:5  
New and renewable fuels are the major alternatives to conventional fossil fuels. Biomass in the form of agricultural residues is becoming popular among new renewable energy sources, especially given its wide potential and abundant usage. Pyrolysis is the most important process among the thermal conversion processes of biomass. In this study, the production of bio-oil and biochar from rapeseed cake obtained by cold extraction pressing was investigated and the various characteristics of biochar and bio-oil acquired under static atmospheric conditions were identified. The biochar obtained are carbon rich, with high heating value and relatively pollution-free potential solid biofuel. The bio-oil product was presented as an environmentally friendly green biofuel candidate.  相似文献   

18.
Bio-oil has been produced from palm kernel shell in a fluidized bed reactor. The process conditions were optimized and the detailed characteristics of bio-oil were carried out. The higher feeding rate and higher gas flow rate attributed to higher bio-oil yield. The maximum mass fraction of biomass (57%) converted to bio-oil at 550 °C when 2 L min−1 of gas and 10 g min−1 of biomass were fed. The bio-oil produced up to 500 °C existed in two distinct phases, while it formed one homogeneous phase when it was produced above 500 °C. The higher heating value of bio-oil produced at 550 °C was found to be 23.48 MJ kg−1. As GC–MS data shows, the area ratio of phenol is the maximum among the area ratio of identified compounds in 550 °C bio-oil. The UV–Fluorescence absorption, which is the indication of aromatic content, is also the highest in 550 °C bio-oil.  相似文献   

19.
We demonstrated an auto-thermal reforming process for producing hydrogen from biomass pyrolysis liquids. Using a noble metal catalyst (0.5% Pt/Al2O3 from BASF) at a methane-equivalent space velocity of around 2000 h−1, a reformer temperature of 800 °C–850 °C, a steam-to-carbon ratio of 2.8–4.0, and an oxygen-to-carbon ratio of 0.9–1.1, we produced 9–11 g of hydrogen per 100 g of fast pyrolysis bio-oil, which corresponds to 70%–83% of the stoichiometric potential. The elemental composition of bio-oil and the bio-oil carbon-to-gas conversion, which ranged from 70% to 89%, had the most significant impact on the yield of hydrogen. Because of incomplete volatility the remaining 11%–30% of bio-oil carbon formed deposits in the evaporator. Assuming the same process efficiency as that in the laboratory unit, the cost of hydrogen production in a 1500 kg/day plant was estimated at $4.26/kg with the feedstock, fast pyrolysis bio-oil, contributing 56.3% of the production cost.  相似文献   

20.
Empty fruit bunch (EFB) from oil palm is one of the potential biomass to produce biofuels like bio-oil due to its abundant supply and favorable physicochemical characteristics. Confirming the assertion, this paper presents an overview of EFB as a feedstock for bio-oil production. The fundamental characteristics of EFB in terms of proximate analysis, ultimate analysis and chemical composition, as well as the recent advances in EFB conversion processes for bio-oil production like pyrolysis and solvolysis are outlined and discussed. A comparison of properties in terms of proximate analysis, ultimate analysis and fuel properties between the bio-oil from EFB and petroleum fuel oil is included. The major challenges and future prospects towards the utilization of EFB as a useful resource for bio-oil production are also addressed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号