首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report the preparation of a processible magnetite/polyaniline (Fe3O4/PANI) nanocomposite, containing dodecylbencensulfonic acid (DBSA) as a surfactant and dopant, with both magnetic and conducting properties. Different amounts of Fe3O4 nanoparticles were successfully disposed with FeCl3 solution to prevent their aggregation in the solution by the application of common ion effect. The magnetic properties of the resulting composites were investigated by a quantum design magnetometer (PMPS). The (Fe3O4/PANI) nanocomposite showed at 300 K no loop of hysteresis indicating the superparamagnetic nature. The saturation magnetization varies from 0.167 to 28.45 emu/g with increasing Fe3O4 content. Zero field cooling (ZFC) and Field cooling (FC) profiles showed that the polyaniline matrix allows each ferrite nanoparticles to behave independently and interparticle interactions are not important for iron oxide content lower than 36 wt.%. The electrical conductivity of composites was found to be higher than that of the pure PANI in spite of the insertion of the insulating material Fe3O4 particles. It is noticeable that conductivity increases with low Fe3O4 particles content and then decreases. Structural characterization by X-ray diffraction (XRD), UV spectroscopy and thermogravimetric analysis (TGA) have been performed.  相似文献   

2.
The surface modification of nanoparticles (NPs) using different ligands is a common strategy to increase NP?cell interactions. Here, dentin phosphophoryn‐derived peptide (DSS) lignin nanoparticles (LNPs) are prepared and characterized, the cellular internalization of the DSS‐functionalized LNPs (LNPs‐DSS) into three different cancer cell lines is evaluated, and their efficacy with the widely used iRGD peptide is compared. It is shown that controlled extent of carboxylation of lignin improves the stability at physiological conditions of LNPs formed upon solvent exchange. Functionalization with DSS and iRGD peptides maintains the spherical morphology and moderate polydispersity of LNPs. The LNPs exhibit good cytocompatibility when cultured with PC3‐MM2, MDA‐MB‐231, and A549 in the conventional 2D model and in the 3D cell spheroid morphology. Importantly, the 3D cell models reveal augmented internalization of peptide‐functionalized LNPs and improve antiproliferative effects when the LNPs are loaded with a cytotoxic compound. Overall, LNPs‐DSS show equal or even superior cellular internalization than the LNPs‐iRGD, suggesting that DSS can also be used to enhance the cellular uptake of NPs into different types of cells, and release different cargos intracellularly.  相似文献   

3.
In the present research, the effect of addition of (1 wt.% and 3 wt.%) alumina nanoparticles (Al2O3) to epoxy modified by poly(styrene-b-butadiene-b-styrene) (SBS) epoxidized triblock copolymer was studied. The microstructure of final hybrid composites was studied with atomic force microscopy (AFM). Composites showed homogeneously dispersed Al2O3 nanoparticles in the epoxy matrix containing polystyrene (PS) microphase separated nanodomains. Dynamic mechanical analyses (DMA), flexural and fracture toughness investigations were carried out. The glass transition temperature of epoxy matrix has been retained unchanged by the addition of Al2O3 nanoparticles. The nanostructured epoxy systems based on SBS epoxidized triblock copolymer and well-dispersed Al2O3 nanoparticles allowed an increase in fracture toughness maintaining the transparency and stiffness of neat epoxy.  相似文献   

4.
Fabricating bio-latex colloids with core–shell nanostructure is an effective method for obtaining films with enhanced mechanical characteristics. Nano-sized lignin is rising as a class of sustainable nanomaterials that can be incorporated into latex colloids. Fundamental knowledge of the correlation between surface chemistry of lignin nanoparticles (LNPs) and integration efficiency in latex colloids and from it thermally processed latex films are scarce. Here, an approach to integrate self-assembled nanospheres of allylated lignin as the surface-activated cores in a seeded free-radical emulsion copolymerization of butyl acrylate and methyl methacrylate is proposed. The interfacial-modulating function on allylated LNPs regulates the emulsion polymerization and it successfully produces a multi-energy dissipative latex film structure containing a lignin-dominated core (16% dry weight basis). At an optimized allyl-terminated surface functionality of 1.04 mmol g−1, the LNPs-integrated latex film exhibits extremely high toughness value above 57.7 MJ m−3. With multiple morphological and microstructural characterizations, the well-ordered packing of latex colloids under the nanoconfinement of LNPs in the latex films is revealed. It is concluded that the surface chemistry metrics of colloidal cores in terms of the abundance of polymerization-modulating anchors and their accessibility have a delicate control over the structural evolution of core–shell latex colloids.  相似文献   

5.
Nanocomposite microgels are a new class of intelligent materials because of their fast response time, large surface area, and so on. In this study, we demonstrate a new kind of multiple stimulus-responsive organic/inorganic hybrid microgels by combining dual stimuli-responsive poly(2-(2-methoxyethoxy)ethyl methacrylate-co-oligo(ethylene glycol)methacrylate-co-acrylic acid) (PMOA) microgels with magnetic attapulgite/Fe3O4 (AT–Fe3O4) nanoparticles. AT–Fe3O4 nanoparticles were introduced into the dual-responsive (temperature and pH) PMOA microgels network by in situ polymerization. The responsive behaviors, microstructures, and the interaction between AT–Fe3O4 and PMOA microgels matrix of the prepared microgels were systematically characterized using field emission scanning electron microscopy, particle size and Zeta potential analyzer, vibrating sample magnetometer, and Fourier transform infrared spectroscopy. The results showed that the AT–Fe3O4 nanoparticles dispersed well in the microgel matrix, and the nanoparticles could be stably present in PMOA without phase separation because of the hydrogen bond (H-bond) interactions between AT–Fe3O4 nanoparticles and PMOA matrix. In addition, the multifunctional AT–Fe3O4/PMOA nanocomposite microgels had both temperature/pH sensitivity and magnetic functionality.  相似文献   

6.
Carbonization of magnetic polymer microspheres is one of the methods for the preparation of magnetic carbon materials. Fe3O4 magnetic particle characteristics considerably influence the magnetic content and size distribution of magnetic polymer microspheres. The characteristics of Fe3O4 nanoparticles modified by oleic acid (OA) and undecylenic acid (UA) were analyzed by X-ray diffraction, Fourier transform infrared, scanning electron microscopy, dynamic laser light scattering, thermogravimetry/differential thermogravimetry, vibrating sample magnetometer, and water contact angle. Fe3O4 nanoparticles modified by OA and UA are nearly spherical and exhibit superparamagnetism. Fe3O4 particle size and saturation magnetization are slightly influenced by the OA and UA composition. OA and UA both are chemically adsorbed onto Fe3O4 as bidentate chelates. OA shows easier adsorption onto Fe3O4 than UA. OA groups have an expanded arrangement on OA@Fe3O4, whereas UA groups have a condensed arrangement on UA@Fe3O4. Particle lipophilicity decreases and particle clustering increases with decreasing OA content and increasing UA content on OA-UA@Fe3O4 nanoparticles.  相似文献   

7.
Facile methods for the selective preparation of capped iron oxide nanoparticles (γ-Fe2O3, Fe3O4) are described. The magnetic oxides are obtained via oxidative transformation of an iron hydroxide gel using H2O2 or (NH4)2S2O8 solutions as oxidants. Capping with oleic or other aliphatic acids is established simultaneously in one step by adding a toluene solution of the capping agent and refluxing the resulting biphase system. The method is simple, soft and affords nanoparticles of γ-Fe2O3 or Fe3O4 of controlled size depending on the reaction conditions. The capped nanoparticles are readily soluble in organic or aqueous media according to the nature of the sheath surrounding the surface of the particles, providing stable and high concentration ferrofluids.  相似文献   

8.
We report a simple approach to synthesize emulsion of oleic acid (OA) containing Fe3O4-OA nanoparticles as magnetic building block of photonic crystals by combined chemical co-precipitation and emulsification technology. The emulsion droplets exhibit dominant size distribution of 80-110 nm and superparamagnetic behavior. A high loading fraction of magnetic compounds Fe3O4 in emulsion of 72% was achieved by the approach. Upon application of a magnetic field, the emulsion droplets in water facilely self-assemble into photonic crystals, and the stop bands could be tuned in ranging visible spectrum by moving position of magnet. The method to synthesize emulsion with high magnetic loading fraction should facilitate preparation of tunable photonic crystals and expand their application.  相似文献   

9.
《Advanced Powder Technology》2020,31(4):1665-1673
A model Oxide Dispersion Strengthened (ODS) alloy powder of composition Fe – 15 wt. % Y2O3 – x wt. % Ti (x = 0, 2, 5, 10 and 15) were synthesized by high energy mechanical milling in Ar atmosphere for a prolonged duration of 60 h. Synchrotron X-ray diffraction (XRD) and transmission electron microscopy (TEM) observations suggested the amorphisation of Y2O3 nano-crystallites, irrespective of Ti content, which is further studied by Raman spectroscopy. The Raman spectroscopy analysis confirms the presence of YO bonding in the milled powder and ruled out the possibility of elemental dissociation of Y2O3 and dissolution into the Fe matrix. Annealing of the milled powders containing different amounts of Ti led to formation of different types of oxide complexes which were also studied using synchrotron XRD and TEM studies. The role of Ti in refining the dispersoids through formation of Y1.6Ti1.8Fe0.4O6.6 is established through these studies.  相似文献   

10.
Addition of Al can improve the corrosion resistance of oxide dispersion strengthened (ODS) steels. However, Al reacts with Y2O3 to form large Y–Al–O particles in the steels and deteriorates their mechanical properties. Herein, we successfully prepared Y2Ti2O7 nanoparticles (NPs) by the combination of hydrogen plasma-metal reaction (HPMR) and annealing. Y2Ti2O7 NPs with contents of 0.2 or 0.6 wt.% were then added into the Fe–14Cr–3Al–2W–0.35Ti (wt.%) steel to substitute the conventional Y2O3 NPs by mechanical alloying (MA). The Y2Ti2O7 NPs transformed into amorphous-like structure after 96 h MA. They crystallized with a fine size of 7.4 ± 3.7 nm and shared a semi-coherent interface with the matrix after hot isostatic pressing (HIP) of the ODS steel with 0.6 wt.% Y2Ti2O7. With the increasing Y2Ti2O7 content from 0.2 to 0.6 wt.%, the tensile strength of the ODS steel increased from 1238 to 1296 MPa, which was much higher than that (949 MPa) of the ODS steel added with Y2O3. The remarkably improved mechanical properties of the Al-containing ODS steels were attributed to the increasing number density of Y2Ti2O7 nanoprecipitates. Our work demonstrates a novel route to fabricate high performance ODS steels with both high mechanical strength and good corrosion resistance.  相似文献   

11.
In this study, the effect of La2O3 nanoparticles (0, 0.01, 0.03, 0.05 and 0.1 wt.%) has been investigated in Sn–3.0Ag–0.5Cu (SAC-305) alloy. The various soldering properties have been tested, such as wettability, microstructural evolution, intermetallic compound formation, micro-hardness, tensile strength, and fracture analysis of tensile tested samples. La2O3 nanoparticles are added in the Sn–3.0Ag–0.5Cu alloy by mechanical mixing of powders and melting. The structural and morphological features of the samples are characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), and electron probe micro-analyzer (EPMA). The experimental results indicate that the best combination of microstructural, wetting and tensile properties is obtained at 0.05 wt.% La2O3 in the solder matrix. The sample reinforced with 0.05 wt.% La2O3 i.e., SAC-0.05 La2O3 exhibits ~ 18% increase in microhardness, ~ 26% increase in the ultimate tensile strength (UTS), and ~ 14% elongation due to the adsorption of high surface energy of La2O3 nanoparticles in the matrix.  相似文献   

12.
Oleic-acid-coated CoFe2O4 nanoparticles were synthesized by co-precipitation and hydrothermal synthesis. The coprecipitation of the nanoparticles was achieved by the rapid addition of a strong base to an aqueous solution of cations in the presence of the oleic acid surfactant, or without this additive. The nanoparticles were also synthesized by a hydrothermal treatment of suspensions of the precipitates, coprecipitated at room temperature in the presence of the oleic acid, or without it. The influence of the synthesis conditions, such as the valence state of the iron cation in the starting aqueous solution, the temperature of the treatment and the presence of oleic acid, on the particles size was systematically studied. X-ray powder diffractometry (XRD) and transmission electron microscopy (TEM) coupled with energy-dispersive X-ray spectroscopy (EDS) revealed that, although spinel forms at room temperature, a substantial amount of Co was incorporated within the secondary, feroxyhyte-like phase when the iron cation was in the 2+ state. In contrast, when iron was in the 3+ state, the spinel forms at elevated temperatures of approximately 60 °C. The presence of the oleic acid further increased the formation temperature for the stoichiometric spinel. Moreover, the oleic acid impeded the particles’ growth and enabled the preparation of colloidal suspensions of the nanoparticles in non-polar organic solvents. The nanoparticles’ size was successfully controlled by the temperature of the synthesis in the region where superparamagnetism dominates to the region where mono-domain ferrimagnetism dominates the magnetic properties.  相似文献   

13.
The Zn2SiO4 ceramics with the addition of BaO and B2O3 are fabricated by traditional solid-state preparation process at a sintering temperature of 900 °C. The introduction of BaO and B2O3 to the binary system ZnO-SiO2 is achieved by adding 10 and 20 wt. % flux BB to the mixed ZnO-SiO2 ceramic powders pre-sintered at 1,100 °C, respectively. The chemical composition of the flux BB (50 wt.%BaO-50 wt.% B2O3) is located at a liquid phase zone with a temperature range of about 869–900 °C in the binary diagram BaO-B2O3. In addition, the introduction of BaO and B2O3 to the binary system ZnO-SiO2 is also achieved by the means of a chemical combination of H2SiO3, H3BO3, ZnO and Ba(OH)2·8H2O, which can result in the formation of the hydrated barium borates with low melting characteristics. In turn, by the liquid sintering aid of the barium borate melts, the preparation process of the Zn2SiO4 ceramics can be further simplified. In the two preparation methods, the Zn2SiO4 ceramics with the 1.5–2.0 ZnO/SiO2 molar ratios and the addition of a 10 wt. % flux BB can show good dielectric properties whereas the bending strength mainly depends on the microstructure of the Zn2SiO4 ceramics and SiO2 content in the composition of the specimen.  相似文献   

14.
Fe3O4–polydivinylbenzene (PDVB) nanoworms were firstly synthesized by precipitation polymerization of divinylbenzene in the presence of oleic acid coated iron oxide nanoparticles. The nanoworms had superparamagnetic properties at room temperature, but ferromagnetism at 5 K. Thermogravimetric analysis curves indicated that in comparison with magnetic nanoparticles, the weight percent of iron oxide in nanoworms was slightly declined due to the formation of Fe3O4–PDVB nanocomposites. The superparamagnetic nanoworms could be well dispersed in ethanol, and were capable of easy separation by an external magnetic field. Overall, this provided a valuable methodology for preparation of elongated magnetic nanoparticles with high surface-to-volume ratio, which had potential applications in drug delivery/targeting, magnetic resonance imaging, and nanoprobes for diagnosis and disease treatment.  相似文献   

15.
Pure Mg was employed as a starting material instead of MgH2 in this work. The magnesium prepared by mechanical grinding under H2 (reactive mechanical grinding) with transition elements or oxides showed relatively high hydriding and dehydriding rates when the content of additives was about 20 wt.%. Ni, Fe and Ti were chosen as metallic transition elements to be added. Fe2O3 was selected as an oxide to be added. Samples Mg–14Ni–2Fe2O3–2Ti–2Fe were prepared by reactive mechanical grinding, and their hydrogen storage properties were examined and compared with those of a pure Mg sample prepared by reactive mechanical grinding under the same conditions. The Mg–14Ni–2Fe2O3–2Ti–2Fe sample showed much better hydrogen storage properties than the pure Mg sample. The as-milled Mg–14Ni–2Fe2O3–2Ti–2Fe sample did not require the activation. This sample absorbs 4.26 wt.% H for 5 min, and 4.41 wt.% H for 10 min, and 4.56 wt.% H for 60 min at n = 2. It desorbs 1.13 wt.% H for 10 min, 2.67 wt.% H for 30 min, and 3.32 wt.% H for 60 min at n = 2.  相似文献   

16.
A green method based on the reaction between hydrozincite (Zn5(CO3)2(OH)6) powder and hydrogen peroxide (H2O2, 30 wt.%) in aqueous solution at room temperature was developed for the synthesis of ZnO2 nanoparticles. Results from X-ray diffraction, transmission electron microscopy and Raman demonstrated that the resultant products were pure cubic phase ZnO2 nanoparticles, whose sizes were in the range of 3.1-4.2 nm. Thermogravimetric analysis indicated that between 180 and 350 °C, the as-synthesized ZnO2 nanoparticles had a weight loss of about 16.7%, consistent with the theoretical amount (16.4%) of the O2 released from ZnO2 decomposition (ZnO2 = ZnO + 1/2O2). The present method was green, simple and cost-effective, which should be suitable for large-scale production of multifunctional ZnO2 nanoparticles.  相似文献   

17.
Hybrids and nanocomposites of polymer and magnetic Fe3O4 nanoparticles have been utilized as magnetically-responsive materials and magnetically-directed nanoparticles. In this work, we prepare polymer-functionalized Fe3O4 nanoparticles through in situ Diels–Alder polymerization using maleimide-functionalized Fe3O4 nanoparticle as a precursor. Polybenzoxazine-functionalized Fe3O4 nanoparticles (MNP-PBz) have been obtained and characterized with Fourier Transform Infrared, X ray photoelectron, and Raman spectroscopies. The high saturation magnetization value of 51.9 emu g−1 of the MNP-PBz nanoparticles demonstrates its superparamagnetism. Moreover, MNP-FBz has been utilized as a nanofiller for preparation of cured PBz/MNP-PBz nanocomposites, which contain various MNP-PBz contents of 67, 50, 33, and 17 wt.%. The sample of PBz/MNP-PBz-67 shows a storage modulus of 8.0 GPa, a saturation magnetization value of 37.6 emu g−1, and a glass transition temperature above 380 °C. As a result, the PBz/MNP-PBz nanocomposites could be classified as magnetically-responsive high performance materials.  相似文献   

18.
This study introduces multifunctional lipid nanoparticles (LNPs), mimicking the structure and compositions of low‐density lipoproteins, for the tumor‐targeted co‐delivery of anti‐cancer drugs and superparamagnetic nanocrystals. Paclitaxel (4.7 wt%) and iron oxide nanocrystals (6.8 wt%, 11 nm in diameter) are co‐encapsulated within folate‐functionalized LNPs, which contain a cluster of nanocrystals with an overall diameter of about 170 nm and a zeta potential of about ‐40 mV. The folate‐functionalized LNPs enable the targeted detection of MCF‐7, human breast adenocarcinoma expressing folate receptors, in T2‐weighted magnetic resonance images as well as the efficient intracellular delivery of paclitaxel. Paclitaxel‐free LNPs show no significant cytotoxicity up to 0.2 mg mL?1, indicating the excellent biocompatibility of the LNPs for intracellular drug delivery applications. The targeted anti‐tumor activities of the LNPs in a mouse tumor model suggest that the low‐density lipoprotein‐mimetic LNPs can be an effective theranostic platform with excellent biocompatibility for the tumor‐targeted co‐delivery of various anti‐cancer agents.  相似文献   

19.
Effects of Bi2O3 addition on the microstructural development and magnetic properties of NiCuZn ferrites were studied. For low temperature sintering (<900 °C), 0.1–1.0 wt % of Bi2O3 was added to the NiCuZn ferrites. The grain size and bulk density gradually increased with the increase in the Bi2O3 content. Above 0.5 wt % Bi2O3, abnormal grain growth was observed. The specimen with 0.25 wt % Bi2O3 showed the highest initial permeability with good quality factors and a uniform microstructure. However, the specimen with greater than 0.5 wt % Bi2O3 demonstrated abnormal grain growth with lower initial permeabilities and poor quality factors.  相似文献   

20.
A novel approach, combining in-situ composite method with electrospinning, was used to prepare high magnetic Fe3O4/poly(vinyl alcohol) (PVA) composite nanofibers. Fe3O4 magnetic fluids were synthesized by chemical co-precipitation method in the presence of 6 wt.% PVA aqueous solution. PVA was used as stabilizer and polymeric matrix. The resulting Fe3O4/PVA composite nanofibers were characterized with field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM) and X-ray diffractometer (XRD), respectively. These composite fibers showed a uniform and continuous morphology, with the Fe3O4 nanoparticles embedded in the fibers. Magnetization test confirmed that the composite fiber showed a high saturated magnetization (Ms = 2.42 emµ·g-1) although only 4 wt.% content.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号