首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of blade number on performance of drag type vertical axis wind turbine (VAWT) is studied by Ansys numerical simulation, it involves 3-blade, 5-blade and 6-blade VAWTs. The optimized width of blade for each VAWT at maximum power efficiency is obtained, and simulation for the wind turbine with different number of blade is conducted for the VAWTs with turbine radius of 2 m at the inlet wind speed 8 m/s. By simulations, it gets the evolution curve of torque with respect to time, and the cyclical characteristics for these wind turbines. The results show that the maximum power efficiency and the stability of the wind turbine increase with the number of blade of the wind turbine, however the optimal d/D decreases with the number of blade of the wind turbine. The maximum power efficiencies are 20.44, 24.30 and 26.82% for 3-blade, 5-blade and 6-blade wind turbines, and the correspondingly optimal d/D are 0.66, 0.40 and 0.35, respectively. While the optimal rotational rate of turbine decreases with blade number.  相似文献   

2.
Numerical modelling is used to assess the effect of a turbine array on tidal currents in the Tory Channel, New Zealand. The Tory Channel is the smaller of two entrances from Cook Strait to the Queen Charlotte Sound with a large island separating the narrow Tory Channel from the main entrance. The 2D depth-averaged finite element model is validated against velocities from shipboard ADCP transects from a survey during spring tide conditions, and water levels recorded at the study site. Turbine drag is introduced to the model as a stress term in the momentum equations, and includes both the turbine thrust and the structural drag. Turbine array drag is a function of the number and size of turbines, which can be parameterised in a non-dimensional number. This non-dimensional turbine drag number D can be used to represent the drag of several different turbine designs. Restrictions are placed on the size of the array to ensure that turbines are placed in realistic locations. In this study, turbines are restricted to areas with water depths greater than 30 m, and where spring tide currents (in the absence of turbines) are greater than 2.0 m s−1, and consequently the turbine array does not span the entire channel width or length. The modelling shows turbines will reduce current speeds both within the turbine array, and also throughout much of the Tory Channel, with local increases in speed immediately adjacent the array. Cut-in and maximum or rated turbine speeds are also incorporated to compare how these factors influence both the power production and effect on currents. The study shows that, due to the restrictions placed on the array location, the likely power production that can be achieved is considerably less than what an analytical prediction suggests might be obtained from the channel. Due to the effects of turbines on current speeds, optimising the area occupied by an array is likely to be an iterative procedure. The power produced per turbine unit could be substantially improved, with little impact on total power produced by the array, by removing turbines from areas where power produced was low. Turbine operational limits, applied in the form of cut-in speeds below which no power is produced, and design speeds above which load shedding occurs, affect both the magnitude and spatial distribution of power production and thus need to be considered in array design.  相似文献   

3.
S. McTavish  S. Rodrigue  D. Feszty  F. Nitzsche 《风能》2015,18(11):1989-2011
A method of increasing the performance of wind farms has been established by limiting the lateral separation between neighbouring wind turbines. The close proximity of the wind turbines creates a beneficial in‐field blockage effect that results in a core of increased speed that is accelerated through the gap between the turbines. A preceding study indicated that the performance of three wind turbines can be increased by over 10% with tip‐to‐tip separation of 0.5 diameters (D) compared with the power output of the respective turbines in isolation. A corresponding flow‐mapping study has been completed in the current work using a single‐normal hot‐wire anemometer to characterize the increased flow speed through a narrow lateral gap, leading to the observation of a region of increased speed that occurs between 0D and 2.5D downstream of the gap between laterally spaced wind turbines. The experimental results were confirmed by conducting a series of computational simulations with the generalized unsteady vortex particle discrete vortex method code. The simulations were conducted with three rotors arranged in five different configurations, and the increase in power generated by the multi‐rotor configurations closely followed the observed experimental trends. The closely spaced lateral wind turbine configurations may have the ability to increase the annual capacity factor of wind farms while reducing wind farm land use requirements. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
Xiande Fang  Yu Xu 《Energy》2011,36(5):2937-2942
The empirical model of turbine efficiency is necessary for the control- and/or diagnosis-oriented simulation and useful for the simulation and analysis of dynamic performances of the turbine equipment and systems, such as air cycle refrigeration systems, power plants, turbine engines, and turbochargers. Existing empirical models of turbine efficiency are insufficient because there is no suitable form available for air cycle refrigeration turbines. This work performs a critical review of empirical models (called mean value models in some literature) of turbine efficiency and develops an empirical model in the desired form for air cycle refrigeration, the dominant cooling approach in aircraft environmental control systems. The Taylor series and regression analysis are used to build the model, with the Taylor series being used to expand functions with the polytropic exponent and the regression analysis to finalize the model. The measured data of a turbocharger turbine and two air cycle refrigeration turbines are used for the regression analysis. The proposed model is compact and able to present the turbine efficiency map. Its predictions agree with the measured data very well, with the corrected coefficient of determination Rc2 ≥ 0.96 and the mean absolute percentage deviation = 1.19% for the three turbines.  相似文献   

5.
Scaled wind turbine experiments were conducted in order to evaluate the beneficial effect of closely-spaced lateral wind turbine configurations on the performance of a wind farm. Two outer wind turbines were spaced apart with a particular gap distance and the longitudinal setback of a central rotor was varied at each gap width. The turbine placement resulted in tip-to-tip separation distances that ranged from 1 diameter (D) to 0.25D. Additionally, the performance of a wind farm layout in rough and smooth boundary layers, designed to mimic onshore and offshore conditions, respectively, was evaluated. It was observed that a narrow gap between several laterally-aligned rotors creates an in-field blockage effect that results in beneficial flow acceleration through the gap. This increase in speed increases the power output of the central turbine when its longitudinal setback is between 0D and 2.5D. A cumulative increase in power output of 17% was observed when 3 rotors were aligned in a lateral plane with a blade tip separation of 0.5D or 0.25D, compared to the same number of rotors in isolation. While the benefits of closely-spaced wind turbines were observed in both of the tested boundary layers, the performance benefits with a smooth boundary layer were smaller than with a rough boundary layer. These results may lead to new wind farm design methodologies for certain topology- and wind distribution-specific sites and suggest that wind turbines can be closely-spaced in the lateral direction in order to obtain substantial increases in power.  相似文献   

6.
As the tidal current industry grows, power extraction from tidal sites has received widespread attention. In this paper, a blade element actuator disk model that is coupled with the blade element method and a three-dimensional Navier–Stokes code is developed to analyse the relationship between power extraction and the layout of turbine arrays. First, a numerical model is constructed to simulate an isolated turbine and the model is validated using experimental data. Then, using this validated model, the power extraction of horizontal axis tidal current turbines using different tidal turbine arrays and rotation directions is predicted. The results of this study demonstrate that staggered grid array turbines can absorb more power from tidal flows than can rectilinear grid array turbines and that staggered grid array turbines are less affected by the rotation of upstream turbines. In addition, for staggered gird arrays, the relationships between power coefficients, lateral distance and longitudinal distance are discussed. The appropriate lateral distance is approximately 2.5 turbine diameters, whereas for the longitudinal distance, the largest value possible should be used. The relative power coefficient can achieve 3.74 when the longitudinal distance is 6 times the turbine diameter. To further increase the power extraction, this study suggests an improved staggered grid array layout. The relative power coefficient of the improved four-row turbine arrays is approximately 3–4% higher than that of the original arrays and will increase as the distance between the second-row and third-row increases. Considering only the first two rows of turbines, the total power extraction can be 11% higher than for an equivalent number of isolated turbines.  相似文献   

7.
Heat transfer augmentation of impinging jet-array with very small separation distances (S/Dj<1) is attempted by using the grooved orifice plate through which the nozzles with different diameters are fitted. The combined effects of groove and nozzle-size distribution in an array have demonstrated considerable influences on heat transfers via their impacts on inter-jet reactions. With a specified coolant flow rate; the detailed heat transfer distributions over the impinging surfaces of three tested arrays are compared to reveal the optimal selections of separation distance and array configuration. Heat transfer modifications caused by varying jet Reynolds number (Re) and separation distance (S/Dj) over the ranges of 1000⩽Re⩽4000 and 0.1⩽S/Dj⩽8 are examined for each test array. In conformity with the experimentally revealed heat transfer physics, a regression-type analysis is performed to develop the correlations of spatially-averaged Nusselt numbers, which permit the individual and interactive effect of Re and S/Dj to be evaluated.  相似文献   

8.
The wake interference effect on the performance of a downstream wind turbine was investigated experimentally. Two similar model turbines with the same rotor diameter were used. The effects on the performance of the downstream turbine of the distance of separation between the turbines and the amount of power extracted from the upstream turbine were studied. The effects of these parameters on the total power output from the turbines were also estimated. The reduction in the maximum power coefficient of the downstream turbine is strongly dependent on the distance between the turbines and the operating condition of the upstream turbine. Depending on the distance of separation and blade pitch angle, the loss in power from the downstream turbine varies from about 20 to 46% compared to the power output from an unobstructed single turbine operating at its designed conditions. By operating the upstream turbine slightly outside this optimum setting or yawing the upstream turbine, the power output from the downstream turbine was significantly improved. This study shows that the total power output could be increased by installing an upstream turbine which extracts less power than the following turbines. By operating the upstream turbine in yawed condition, the gain in total power output from the two turbines could be increased by about 12%.  相似文献   

9.
Field‐scale and wind tunnel experiments were conducted in the 2D to 6D turbine wake region to investigate the effect of geometric and Reynolds number scaling on wake meandering. Five field deployments took place: 4 in the wake of a single 2.5‐MW wind turbine and 1 at a wind farm with numerous 2‐MW turbines. The experiments occurred under near‐neutral thermal conditions. Ground‐based lidar was used to measure wake velocities, and a vertical array of met‐mounted sonic anemometers were used to characterize inflow conditions. Laboratory tests were conducted in an atmospheric boundary layer wind tunnel for comparison with the field results. Treatment of the low‐resolution lidar measurements is discussed, including an empirical correction to velocity spectra using colocated lidar and sonic anemometer. Spectral analysis on the laboratory‐ and utility‐scale measurements confirms a meandering frequency that scales with the Strouhal number St = fD/U based on the turbine rotor diameter D. The scaling indicates the importance of the rotor‐scaled annular shear layer to the dynamics of meandering at the field scale, which is consistent with findings of previous wind tunnel and computational studies. The field and tunnel spectra also reveal a deficit in large‐scale turbulent energy, signaling a sheltering effect of the turbine, which blocks or deflects the largest flow scales of the incoming flow. Two different mechanisms for wake meandering—large scales of the incoming flow and shear instabilities at relatively smaller scales—are discussed and inferred to be related to the turbulent kinetic energy excess and deficit observed in the wake velocity spectra.  相似文献   

10.
Individual wind turbines in a wind farm typically operate to maximize their performance with no consideration of the impact of wake effects on downstream turbines. There is potential to increase power and reduce structural loads within a wind farm by properly coordinating the turbines. To effectively design and analyze coordinated wind turbine controllers requires control‐oriented turbine wake models of sufficient accuracy. This paper focuses on constructing such a model from experiments. The experiments were conducted to better understand the wake interaction and impact on voltage production in a three‐turbine array. The upstream turbine operating condition was modulated in time, and the dynamic impact on the downstream turbine was recorded through the voltage output time signal. The flow dynamics observed in the experiments were used to improve a static wake model often used in the literature for wind farm control. These experiments were performed in the atmospheric boundary layer wind tunnel at the Saint Anthony Falls Laboratory at the University of Minnesota using particle image velocimetry for flow field analysis and turbine voltage modulation to capture the physical evolution in addition to the dynamics of turbine wake interactions. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
Large‐eddy simulations of the flow past an array of three aligned turbines have been performed. The study is focused on below rated (Region 2) wind speeds. The turbines are controlled through the generator torque gain, as usually done in Region 2. Two operating strategies are considered: (i) preset individual optimum torque gain based on a model for the power coefficient (baseline case) and (ii) real‐time optimization of torque gain for maximizing each individual turbine power capture during operation. The real‐time optimization is carried out through a model‐free approach, namely, extremum‐seeking control. It is shown that ESC is capable of increasing the power production of the array by 6.5% relative to the baseline case. The extremum‐seeking control reduces the torque gain of the downstream turbines, thus increasing the angular speed of the blades. This results in improved aerodynamics near the tip of the blade that is the portion contributing mostly to the torque and power. In addition, an increase in angular speed leads to a larger entrainment in the wake, which also contributes to provide additional available power downstream. It is also shown that the tip speed ratio may not be a reliable performance indicator when the turbines are in waked conditions. This may be a concern when using optimal parameter settings, determined from isolated turbine models, in applications with waked turbines. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

12.
This paper investigates wake effects on load and power production by using the dynamic wake meander (DWM) model implemented in the aeroelastic code HAWC2. The instationary wind farm flow characteristics are modeled by treating the wind turbine wakes as passive tracers transported downstream using a meandering process driven by the low frequent cross‐wind turbulence components. The model complex is validated by comparing simulated and measured loads for the Dutch Egmond aan Zee wind farm consisting of 36 Vestas V90 turbine located outside the coast of the Netherlands. Loads and production are compared for two distinct wind directions—a free wind situation from the dominating southwest and a full wake situation from northwest, where the observed turbine is operating in wake from five turbines in a row with 7D spacing. The measurements have a very high quality, allowing for detailed comparison of both fatigue and min–mean–max loads for blade root flap, tower yaw and tower bottom bending moments, respectively. Since the observed turbine is located deep inside a row of turbines, a new method on how to handle multiple wakes interaction is proposed. The agreement between measurements and simulations is excellent regarding power production in both free and wake sector, and a very good agreement is seen for the load comparisons too. This enables the conclusion that wake meandering, caused by large scale ambient turbulence, is indeed an important contribution to wake loading in wind farms. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
The impact of blade roughness and biofouling on the performance of a two-bladed horizontal axis marine current turbine was investigated experimentally and numerically. A 0.8 m diameter rotor (1/25th scale) with a NACA 63-618 cross section was tested in a towing tank. The torque, thrust and rotational speed were measured in the range 5 < λ < 11 (λ = tip speed ratio). Three different cases were tested: clean blades, artificially fouled blades and roughened blades. The performance of the turbine was predicted using blade element momentum theory and validated using the experimental results. The lift and drag curves necessary for the numerical model were obtained by testing a 2D NACA 63-618 aerofoil in a wind tunnel under clean and roughened conditions. The numerical model predicts the trends that were observed in the experimental data for roughened blades. The artificially fouled blades did not adversely affect turbine performance, as the vast majority of the fouling sheared off. The remaining material improved the performance by delaying stall to higher angles of attack and allowing measurements at lower λ than were attainable using the clean blades. The turbine performance was adversely affected in the case of roughened blades, with the power coefficient (CP) versus λ curve significantly offset below that for the clean case. The maximum CP for this condition was 0.34, compared to 0.42 for the clean condition.  相似文献   

14.
In this study, the performance, drag, and horizontal midplane wake characteristics of a vertical‐axis Savonius wind turbine are investigated experimentally. The turbine is drag driven and has a helical configuration, with the top rotated 180° relative to the bottom. Both performance and wake measurements were conducted in four different inflow conditions, using Reynolds numbers of ReD≈1.6×105 and ReD≈2.7×105 and turbulence intensities of 0.6% and 5.7%. The efficiency of the turbine was found to be highly dependent on the Reynolds number of the incoming flow. In the high Reynolds number flow case, the efficiency was shown to be considerably higher, compared with the lower Reynolds number case. Increasing the incoming turbulence intensity was found to mitigate the Reynolds number effects. The drag of the turbine was shown to be independent of the turbine's rotational speed over the range tested, and it was slightly lower when the inflow turbulence was increased. The wake was captured for the described inflow conditions in both optimal and suboptimal operating conditions by varying the rotational speed of the turbine. The wake was found to be asymmetrical and deflected to the side where the blade moves opposite to the wind. The largest region of high turbulent kinetic energy was on the side where the blade is moving in the same direction as the wind. Based on the findings from the wake measurements, some recommendations on where to place supplementary turbines are made.  相似文献   

15.
A fast and efficient turbulence‐resolving computational framework, dubbed as WInc3D (Wind Incompressible 3‐Dimensional solver), is presented and validated in this paper. WInc3D offers a unified, highly scalable, high‐fidelity framework for the study of the flow structures and turbulence of wind farm wakes and their impact on the individual turbines' power and loads. Its unique properties lie on the use of higher‐order numerical schemes with “spectral‐like” accuracy, a highly efficient parallelisation strategy which allows the code to scale up to O(104) computing processors and software compactness (use of only native solvers/models) with virtually no dependence to external libraries. The work presents an overview of the current modelling capabilities along with model validation. The presented applications demonstrate the ability of WInc3D to be used for testing farm‐level optimal control strategies using turbine wakes under yawed conditions. Examples are provided for two turbines operating in‐line as well as a small array of 16 turbines operating under “Greedy” and “Co‐operative” yaw angle settings. These large‐scale simulations were performed with up to 8192 computational cores for under 24 hours, for a computational domain discretised with O(109) mesh nodes.  相似文献   

16.
Blending ammonia with hydrogen has the potential of replacing conventional hydrocarbon fuels to reduce carbon emissions. However, the uncertainties of determining safe, stable, and efficient operating conditions remain a great challenge. Furthermore, although control technologies have been in the scope of interest for gas turbine manufacturers, those are not yet specialized for NH3–H2/air gas turbines. Therefore, this paper identifies the cycle performance of an NH3–H2/air gas turbine in comparison to a CH4/air gas turbine, thus highlighting the operating conditions in which the NH3–H2/air gas turbines show higher performance compared to the CH4/air gas turbines. The results have been obtained by developing a LabVIEW code which has also been utilized to serve as a control code for the NH3–H2/air and CH4/air gas turbines. The system identification stage of calibrating the controller has been achieved for both gas turbines by determining the system's sensitivities, thus providing an accurate calibration of the controlling parameters.  相似文献   

17.
Tidal power generation by means of marine current farms is potentially a large renewable energy resource which could be harnessed in many coastal waters. Its availability is highly predictable in time, and the technology promises high energy conversion efficiency along with a relatively low impact on sea life due to its relatively small disturbance of natural tidal flows.A series of devices have so far been proposed and developed for the extraction and conversion of kinetic energy present in tidal flows into useful electrical power [1]. Designs include horizontal axis turbines, vertical axis turbines, and devices with oscillating lift surfaces. Up to date no technology has firmly established itself.This paper describes a novel hydraulic control mechanism designed for vertical-axis marine current turbines of the straight-bladed Darrieus type. It has been found to significantly improve turbine efficiency over conventional Darrieus turbines when operated at low blade tip-speed to tidal-flow-velocity ratios (TSR) and to give the turbine the ability to self-start reliably. The control mechanism enforces a cyclic pivoting motion on the turbine blades as they move around their circular flight-path. The movement of the pitch control is of sinusoidal shape and is continuously variable in amplitude. The blade actuation is powered by the turbine's own rotation and is implemented using a swash-plate mechanism in conjunction with a hydraulic circuit for every blade. For surface piercing turbines, this control mechanism may be remotely positioned in a dry nacelle above sea level. If the appropriate design is applied, this can offer access to the cyclic pitch control mechanism, gearbox and generator, even when the turbine is operational, promising lower maintenance and operating costs compared with submerged systems.  相似文献   

18.
The observed wind at a given site varies continuously as a function of time and season, increasing hub heights, topography of the terrain, prevailing weather condition etc. The quality of wind resource is one of the important site factors to be considered when assessing the wind potential of any location for any energy project. In this study, two wind energy analysis techniques are presented: the use of direct technique where the electrical power outputs of the wind turbines at a time t are estimated using the turbine power curve(s) and the use of statistical-based technique where the power outputs are estimated based on the developed site power curve(s). The wind resource assessment at Darling site is conducted using a 5-min time series weather data collected on a 10 m height over a period of 24 months. Because of the non-linearity of the site's wind speed and its corresponding power output, the wind resources are modeled and the developed site power curve(s) are used to estimate the long term energy outputs of the wind turbines for changing weather conditions. Three wind turbines rating of 1.3 MW, 1.3 MW and 1.0 MW were selected for the energy generation based on the gauged wind resource(s) at 50, 60 and 70 m heights, respectively. The energy outputs at 50 m height using the 1.3 MW WT were compared to the energy outputs at 60 m to determine the standard height for utility scale energy generation at this site. An additional energy generation of 190.71 MWh was available by deploying the same rated turbine at a 60 m height. Furthermore, comparisons were made between the use of turbine and site power curve for wind energy analysis at the considered heights. The results show that the analysis of the energy outputs of the WTs based on the site power curve is an accurate technique for wind energy analysis as compared to the turbine power curve. Conclusions are drawn on the suitability of this site for utility scale generation based on the wind resources evaluation at different heights.  相似文献   

19.
Aerodynamic wake interaction between commercial scale wind turbines can be a significant source of power losses and increased fatigue loads across a wind farm. Significant research has been dedicated to the study of wind turbine wakes and wake model development. This paper profiles influential wake regions for an onshore wind farm using 6 months of recorded SCADA (supervisory control and data acquisition) data. An average wind velocity deficit of over 30% was observed corresponding to power coefficient losses of 0.2 in the wake region. Wind speed fluctuations are also quantified for an array of turbines, inferring an increase in turbulence within the wake region. A study of yaw data within the array showed turbine nacelle misalignment under a range of downstream wake angles, indicating a characteristic of wind turbine behaviour not generally considered in wake studies. The turbines yaw independently in order to capture the increased wind speeds present due to the lateral influx of turbulent wind, contrary to many experimental and simulation methods found in the literature. Improvements are suggested for wind farm control strategies that may improve farm‐wide power output. Additionally, possible causes for wind farm wake model overestimation of wake losses are proposed.Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
This paper aims at predicting trajectories of the detached fragments from wind turbines, in order to better quantify consequences of wind turbine failures. The trajectories of thrown objects are attained using the solution to equations of motion and rotation, with the external loads and moments obtained using blade element approach. We have extended an earlier work by taking into account dynamic stall and wind variations due to shear, and investigated different scenarios of throw including throw of the entire or a part of blade, as well as throw of accumulated ice on the blade. Trajectories are simulated for modern wind turbines ranging in size from 2 to 20 MW using upscaling laws. Extensive parametric analyses are performed against initial release angle, tip speed ratio, detachment geometry, and blade pitch setting. It is found that, while at tip speeds of about 70 m/s (normal operating conditions), pieces of blade (with weights in the range of approximately 7‐16 ton) would be thrown out less than 700 m for the entire range of wind turbines, and turbines operating at the extreme tip speed of 150 m/s may be subject to blade throw of up to 2 km from the turbine. For the ice throw cases, maximum distances of approximately 100 and 600 m are obtained for standstill and normal operating conditions of the wind turbine, respectively, with the ice pieces weighting from 0.4 to 6.5 kg. The simulations can be useful for revision of wind turbine setback standards, especially when combined with risk assessment studies. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号