首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Pressure fluctuation due to rotor–stator interaction and occurrence of vortex rope in draft tube at partial load operation are obvious phenomena in Francis type reaction hydro turbines. These hydrodynamic effects are important issues and should be addressed during the design of hydraulic machines. A 3-dimensional transient state turbulent flow simulation in the entire flow passage of a 70 kW-Francis turbine having specific speed of 203.1 is conducted to investigate the rotor–stator interaction by adopting based SST turbulence model. The commercial 3D Navier–Stokes CFD solver Ansys-CFX is utilized to study the flow through this vertical shaft Francis turbine in its stationary and transient passages, at 100% optimum load and 72% of part load. The investigated turbine consists of a spiral casing with 16 guide vanes, 8 stay vanes, a runner with 13 blades and a draft tube. With a time step of 2° of a rotational period of the runner for 10 full rotations, the time dependent pressure and torque variations are monitored at the selected locations during the unsteady state calculation. A periodical behavior is observed for the pressure distribution in guide vanes, runner blades and torque in the runner blades. The pressure distribution curve in runner blades reveals the two dominating frequencies – the lower peaks due to runner speed and the upper peaks corresponding to the number of guide vanes interacting with the flow. The flow acceleration toward inside of the runner is depicted by the expanding wakes behind the stay vanes. Vortex rope is observed in draft tube, downstream the runner, at part-load operation.  相似文献   

2.
对某水电站D75—35型水轮机的蜗壳、固定导叶、活动导叶内部的流动进行了解析计算,结果表明:受固定导叶不对称分布的影响,固定导叶和活动导叶内部的压力和速度分布不均匀,尾流较为明显,能量损失较大;压力和速度的脉动变化以及不均匀分布进一步延伸至转轮,将会造成转轮运行的不稳定,进而影响整个水轮机组的稳定运行。  相似文献   

3.
为了研究颗粒对混流式水轮机内部流场和外特性的影响,采用单相和固液两相流模型对某电站的高水头混流式水轮机进行全流道非定常数值模拟,分析水轮机运行在典型工况(小流量工况、额定工况、大流量工况)时的外特性和压力脉动特性。结果表明:颗粒的存在会不同程度降低水轮机效率,平均降低1%左右。在监测点P_1(转轮与活动导叶的交界面)处,颗粒的存在不同程度增加了此处的压力脉动,小流量工况下增加幅度最大;监测点P_5(尾水管)处,小流量工况下颗粒的存在增加了此处的低频压力脉动,大流量下颗粒的存在略微削弱了此处的压力脉动幅值。  相似文献   

4.
为实现冷却塔富余能量的回收,需要开发出一种新型超低比转速水轮机与风机直接匹配.采用二元理论,从相对导叶高度(H/D)、转轮流道、叶片环量、叶片数等方面进行开发设计.然后基于N-S方程和κ-ε紊流模型采用FLUENT对新型水轮机转轮进行数值模拟,分析研究了转轮的流动、汽蚀和能量性能.数值模拟结果表明:超低比转速水轮机内部流动性能良好,水轮机效率在较大的进口冲角范围内达80%以上.  相似文献   

5.
为了研究气液两相条件下导叶对液力透平内部流动特性的影响,现选取比转速为55.7的离心泵反转作为液力透平,并在液力透平叶轮进口添加一组负曲率导叶,设计出含导叶的水力模型,研究含气工况下导叶对液力透平性能的影响。研究发现:添加导叶前蜗壳和叶轮流道内压力分布和气相分布不均匀,且含气率越高均匀性越差,过流部件内流动较为紊乱,蜗壳和叶轮流道内出现了旋涡;添加导叶后,在较高含气率工况下叶轮流道内压力分布相对均匀且混合介质的流动情况得到改善,水力损失减少;添加导叶后透平最优效率点的值要高于未添加导叶的最优效率点的值,但随着含气率的提高,添加导叶的液力透平效率比未添加导叶的透平效率下降快。  相似文献   

6.
IlltnductionSeveral of the wave energy devices cuntiy stUdiedin the United kingdom, Japan, POhogal, India and othercountries make use of the principle of the oscillatingwater-air coltUnn for convening wave energy to lowPneqmatic energy Which in tUrn can be converted intomechAncal energy. In this case, the developmellt of a bidirechonal air theme has come lip as an importantProblem. So far, a number of self-rechfying air onnesWith different configurations have been ProPOsed, and a; Wells…  相似文献   

7.
The cross‐flow turbine has attracted much attention as a source of hydropower generation for small and micro‐systems, especially for low head establishments. Such turbines have a distinct advantage of lower initial and operating costs over other small scale turbines, but their efficiency is lower than others. Efficiency predictions of these turbines are generally based on the assumption that the entire flow crosses from the first stage to the second stage of the turbine runner. In this study, interior guide tubes were designed and used inside the runner of a cross‐flow turbine to collect and guide the crossing flow towards the second stage of the runner. The interior guide tubes were designed on the basis of observed flow patterns inside the runner. Experimentally, three different types of tubes were tested. The laboratory tests were conducted to calculate the turbine efficiency with different gate openings of nozzle and different positions of interior guide tubes. Results of this work with and without interior tubes have been presented in this paper. When the experiments were done with and without interior guide tubes, it has been found that turbine efficiency with the interior guide tube decreased about 5 per cent. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

8.
A Wells turbine is a self-rectifying air flow turbine capable of converting pneumatic power of the periodically reversing air stream in Oscillating Water Column into mechanical energy. The Wells turbine has inherent disadvantages; lower efficiency, poorer starting characteristics, higher axial force and low tangential force in comparison with conventional turbines. Guide vanes before and after the rotor suggest a means to improve the tangential force, hence its efficiency. Experimental investigations are carried out on a Wells turbine with the constant chord and variable chord blade rotors fitted with inlet and outlet guide vanes to understand the aerodynamics. Experiments were also conducted for the above said rotors with various stagger angles to validate the design stagger angle. In addition, the starting and running characteristics of the rotors have been studied and compared with the case without guide vanes. Studies were done at various flow coefficients covering the entire range of flow coefficients over which the turbine is operable. The efficiency, starting characteristics of the turbines with guide vanes have improved when compared with the respective turbines without guide vanes.  相似文献   

9.
Francis turbines, as other hydraulic turbines, are custom-designed for nominal operating conditions specific to each power plant. However, they may need to be operated at off-design flow conditions because of variable reservoir levels and flowrates. Operating the turbine at off-design points can cause cavitation. Four cavitation types can be observed on Francis turbine runners. These are leading edge, travelling bubble, draft tube swirl and inter-blade vortex cavitation. They may cause erosion, reduction in efficiency, vibration, instability of operation and noise. Runner blades must be designed taking the flow characteristics into account for design conditions to prevent cavitation. Cavitation limits for the off-design points must also be determined. In this study, the runner geometry of an actual hydroelectric power plant that was designed and implemented in 1960s, is redesigned with the help of the state of the art computational fluid dynamics techniques for cavitation free operation. The cavitation limits for the off-design points are also determined.  相似文献   

10.
Oscillating water column(OWC)based wave energy plants have been designed with several types of bidirec-tional turbines for converting pneumatic power to shaft power.Impulse turbines with linked guide vanes andfixed guide vanes have been tested at the Indian Wave Energy plant.This was after initial experimentation withWell's turbines.In contrast to the Well's turbine which has a linear damping characteristic,impulse turbines havenon-linear damping.This has an important effect in the overall energy conversion from wave to wire.Optimizingthe wave energy plant requires a turbine with linear damping and good efficiency over a broad range of flow co-efficient.This work describes how such a design can be made using fixed guide vane impulse turbines.The In-dian Wave Energy plant is used as a case study.  相似文献   

11.
基于数值模拟方法,以梯级水光蓄互补联合发电系统示范工程中的猛固桥电站混流式水轮机为研究对象,对水轮机在不同特征水头、不同导叶开度工况下转轮叶片表面受力及流道内流场特性进行研究,分析导叶开度改变对水轮机转轮内流态的影响规律。结果表明:导叶开度对于混流式转轮进口流态的影响较大,导叶开度越小入流速度波动程度越大,来流对叶片头部冲击越大,在进口处产生严重的冲击损失;随导叶开度减小,转轮叶片表面等压线与进口边夹角增大,在上冠交接区域产生小三角区低压,使转轮流道出口更易产生空化损失。  相似文献   

12.
X型叶片为先进水轮机设备的关键部件,对其水力特性研究很有必要。以新疆某水利工程为例,在联合坐标系下对低水头大变幅X型叶片水轮机流动进行了CFD计算,得到了蜗壳、座环、活动导叶、转轮和尾水管等过流部件的压力分布和速度分布特性,计算结果表明,X型叶片水轮机在设计水头至最小水头大流量条件下更易发生空蚀破坏,而在最大水头小开度条件下尾水管脉动压力变幅较大,振动问题突出。  相似文献   

13.
This paper presents the experimental results of effect of guide vane shape on performance of an impulse turbine for wave energy conversion. Two types of guide vanes are considered in the present study: two-dimensional (2D) guide vanes and three-dimensional (3D) guide vanes. The previous investigations by the authors revealed that the 2D guide vanes cause large recirculation zones at leading edge of downstream guide vanes, which affect the performance of turbine considerably. In order to improve the performance of turbine, three-dimensional guide vanes are designed based on free-vortex theory. Detailed aerodynamic and performance tests have been conducted on impulse turbine with the two types of guide vanes. The experiments have been conducted under various inlet conditions such as steady, sinusoidal and random (real Sea) flows. From the results, it was proved that the efficiency of impulse turbine has been improved for 4.5% points due to 3D guide vanes. The hysteric characteristic has been noticed from the experimental results of impulse turbine with sinusoidal and random flow inlet conditions. Furthermore, it was investigated that the performance of turbine is considerably more during deceleration of inlet flow than the acceleration in a half cycle of sinusoidal wave.  相似文献   

14.
针对电力系统分析软件PSD-BPA中水轮机调速系统的执行机构模型不能有效反映实际特征且混流式水轮机模型仿真精度不高的问题,提出了考虑导叶分段关闭特性的执行机构模型,设置不同的分段点对机组甩负荷进行了仿真分析,并对计及功率与开度间非线性关系的混流式水轮机解析非线性模型进行研究。仿真及实测分析结果表明,考虑导叶分段关闭特性的水轮机调速系统改进模型能准确仿真混流式水轮机组导叶分段关闭规律,比BPA模型的开度及功率响应更切合实际,更能体现其有效性。  相似文献   

15.
Recently,small hydroelectric generators have gained attention as a further development in water turbine technology for ultra low head drops in open channels.The authors have evaluated the application of cross-flow water turbines in open channels as an undershot type after removing the casings and guide vanes to substantially simplify these water turbines.However,because undershot cross-flow water turbines are designed on the basis of cross-flow water turbine runners used in typical pipelines,it remains unclear whether the number of blades has an effect on the performance or flow fields.Thus,in this research,experiments and numerical analyses are employed to study the performance and flow fields of undershot cross-flow water turbines with varying number of blades.The findings show that the turbine output and torque are lower,the fluctuation is significantly higher,and the turbine efficiency is higher for runners with 8 blades as opposed to those with 24 blades.  相似文献   

16.
为研究甩负荷过渡过程水泵水轮机内流场特性,以某抽水蓄能电站水泵水轮机模型为例,采用网格壁面滑移技术与DES湍流模型对机组甩负荷过程进行三维瞬态数值模拟,基于湍动能、压力等信号提取叶间流场演变特征。结果表明,后1/3导叶域及其后流道内压力脉动剧烈,50%导叶关闭后,无叶区内形成带圆周速度的水环阻碍水流进入转轮;66.7%导叶关闭后,转轮叶间流道内出现涡旋,在较大压力梯度作用下旋转失速涡带扩散加剧流动分离,阻塞转轮流道。甩负荷过程尾水管内先充满与转轮同向的旋流,紧接着靠近内壁侧出现空腔且外壁侧旋流量减小,然后内壁侧出现与外壁侧旋向相反的回流。研究结果为良好运行性能的机组设计奠定了基础。  相似文献   

17.
本文叙述了压气机采用可调静叶对单轴恒速燃气轮机变工况性能的影响。通过计算得到了燃气轮机变工况性能曲线,分析了不同的最大排气温度对静叶调节区的影响,以及在部分负荷下机组效率变化的影响。叙述了压气机静叶调节时对由单轴恒速燃气轮机组成的联合循环的影响,指出这时能改善部分负荷下的效率,因而得到了实际应用。  相似文献   

18.
介绍了水泵水轮机“S”特性并从理论上分析了其形成的原因。由于活动导叶与固定导叶的共同作用,抽水蓄能机组水头低时发电,导叶异步开启时,进入转轮前部分水流的流速得到了提高,并高于导叶同步开启时进入转轮前水流的流速。从而有效地改善了对应空载工况点处的“S”特性,解决了水泵水轮机“S”特性此时对机组运行的不利影响。并结合实例进行了分析。  相似文献   

19.
Conventionally assessing of turbine performance was done by conducting model experiments which at times become costly and time consuming for several design alternatives in design optimization. Recently, computational fluid dynamics (CFD) has become a more cost effective tool for predicting detailed flow information in turbine space to enable the selection of the best design. With the growth of computational mechanics, the virtual hydraulic machines are becoming more and more realistic to get minor details of the flow, which are not possible in model testing. The inverse design technique and fully 3-dimensional flow simulations were performed early to manufacture the newly developed runner. It allows a quick and efficient improvement and optimization of turbine components. The system has been applied to the optimization of a Francis turbine runner for a turbine replacement project. In present work, 3D turbulent real flow analyses in hydraulic Francis turbine have been carried out at four guide vane opening at constant rotational speed using Ansys CFX computational fluid dynamics (CFD) software. The newly developed runner from reverse engineering and CFD results show an enhanced performance. The average values of flow parameters like velocities and flow angles at the inlet and outlet of runner, guide vane and stay vane of turbine are computed to derive flow characteristics. The aim was to analyze the flow behavior and pressure distribution to further fine-tune the whole numerical experiment to achieve the level of accuracy necessary for the concept design of a revitalized turbine. The obtained results are in good agreement with the in site experiments, especially for the characteristic curve.  相似文献   

20.
This paper deals with the computational fluid dynamics (CFD) analysis on effect of guide vane shape on performance of impulse turbine for wave energy conversion. Initially, experiments have been conducted on the impulse turbine to validate the present CFD method and to analyse the aerodynamics in rotor and guide vanes, which demonstrates the necessity to improve the guide vanes shape. The results showed that the downstream guide vanes make considerable total pressure drop leads low performance of the turbine and hence three‐dimensional (3‐D) inlet and downstream guide vanes have been designed based on well‐known vortex theory to improve the efficiency of the turbine. In order to prove the improvement in efficiency due to 3‐D guide vanes, CFD analysis has been made on impulse turbine with 2‐D and 3‐D guide vanes for various flow coefficients. As a result, it is seen that the present CFD model can predict the experimental values with reasonable accuracy. Also, it is showed from the numerical results that the efficiency of the turbine can be improved by average of 4.5 percentage points by incorporating 3‐D guide vanes instead of 2‐D guide vanes. The physical reason for improvement in efficiency of the turbine due to 3‐D guide vanes has been explained with the CFD flow insight pictures. As the turbine operates in fluctuating flow conditions, the performance of the turbine with 2‐D and 3‐D guide vanes have been calculated numerically using quasi‐steady analysis. Furthermore, the performance of the turbine has been predicted for one year based on Irish wave climate to show the feasibility of using 3‐D guide vanes in actual sea wave conditions. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号