首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
One-step purification of ethylene (C2H4) from a quaternary gas mixture of C2H6/C2H4/C2H2/CO2 by adsorption is a promising separation process, yet developing adsorbents that synergistically capture various gas impurities remains challenging. Herein, a Lego-brick strategy is proposed to customize pore chemistry in a unified framework material. The ethane-selective MOF platform is further modified with customized binding sites to specifically adsorb acetylene and carbon dioxide, thus one-step purification of C2H4 with high productivity of polymer-grade product (134 mol kg−1) is achieved on the assembly of porous coordination polymer-2,5-furandicarboxylic acid (PCP-FDCA) and PCP-5-aminoisophthalic acid (IPA-NH2). Computational studies verify that the low-polarity surface of this MOFs-based platform provides a delicate environment for C2H6 recognition, and the specific binding sites (FDCA and IPA-NH2) exhibit favorable trapping of C2H2 and CO2 via C Hδ+···Oδ− and Cδ+···Nδ− electrostatic interactions, respectively. The proposed Lego-brick strategy to customize binding sites within the MOFs structure provides new ideas for the design of adsorbents for compounded separation tasks.  相似文献   

2.
金属-有机框架(MOFs)是一类由金属离子/团簇和有机配体通过配位形成的具有多孔结构的无机-有机杂化材料。MOFs具有比表面积高、孔径均一、结构可调等优点,受到了人们的广泛关注。然而,MOFs的导电性和稳定性较差,制约了其应用的进一步拓展。以MOFs作为前驱体,通过水热反应或煅烧得到组成、形貌、结构可调的MOFs衍生材料,既能够保持MOFs材料结构多样性和多孔性的特点,又能有效提高其导电性和稳定性,近年来已成为该领域的研究热点。然而,MOFs衍生材料单一的组成和结构,使其能够提供的性能(如电容性能、催化性能)有限,极大地限制了其相关应用的发展。因此,近几年除了研究制备各种不同MOFs衍生材料外,研究者们主要从MOFs衍生材料的组成和结构方面出发,制备出多样化且在各方面应用中(如储能器件、催化)表现出优异性能的材料。MOFs衍生材料作为性能优异的应用型材料,其研究较为成熟的组成和结构分别主要包括多孔碳、金属氧化物、金属硫化物、金属磷化物、金属氢氧化物以及纤维状结构、中空结构、核壳结构等。MOFs衍生材料不仅具有高的比表面积、均一的孔径分布,通常还结合了衍生多孔碳的高导电性及其他衍生材料(金属化合物或掺杂的金属原子及杂原子,如N、P、S等)的优异性能(如电容性能、催化性能),从而发挥出更加优异的性能。其中,MOFs衍生金属化合物材料具备多孔结构,能够提供优异的容量性能及催化性能等,且其性能通常优于通过其他方法制备得到的同种材料。从结构方面出发,近几年,研究者们通过调控前驱体结构亦或是反应条件,制备得到多种不同结构的MOFs衍生材料。一方面,部分制备得到的结构(如核壳结构、中空结构)可以缓解MOFs衍生材料在使用过程中所受到的冲击,从而表现出优异的循环性能。另一方面,通过调控MOFs衍生材料的结构,使其活性位点得到充分的暴露,从而使其性能得到最大化的发挥。本文综述了MOFs衍生材料的研究进展,包括组成特点、结构调控,及其在储能器件、催化领域的应用,最后阐述了MOFs衍生材料研究领域当前面临的挑战以及未来的发展前景。  相似文献   

3.
金属有机骨架材料(MOFs)因具有超高比表面积、较大的孔隙率、多样化且可调的孔道结构及相对温和的制备条件等优势,目前已成为化学和材料等学科的研究热点之一。概述了MOFs材料的制备方法及其用于气体(含碳、含氮及含硫)吸附与分离方面的研究进展,并对其在该方面今后的发展趋势和应用前景进行了展望。  相似文献   

4.
郝金蕾  张桂华  王艳  万金泉  马邕文  黄礼艳 《材料导报》2018,32(14):2475-2480, 2507
获得可固载PTA的大孔道载体,对于大分子物质的催化转化具有重要意义。本研究采用扩孔剂CTAB对MOFs载体进行扩孔并同步实现PTA的化学固载,同时在MOFs的骨架中接枝-Cl和-NH2实现其功能化。研究发现加入CTAB后虽然获得的样品均为MIL-101结构,且随CTAB加入量的增加,样品的晶面生长逐渐变差,但仍具有良好的热稳定性。MOFs的比表面积和孔径随CTAB加入量的增加而逐渐增大,经CTAB扩孔后,MOFs由微孔结构转化为微孔与介孔共存结构,在CTAB加入量为5.4mmol时,样品的介孔结构占比最大,达到87%,孔径以3.9nm和46.1nm为主。CTAB的加入不会影响-NH2与PTA的静电作用,但PTA的固载量随CTAB加入量的增加先增大后减小,当CTAB加入量为3.6mmol时PTA的固载量最大,所获得的催化剂样品催化水解微晶纤维素的葡萄糖产率也达到最大,获得葡萄糖产率可达到等量未固载PTA催化效能的76.35%。样品连续三次催化水解微晶纤维素后,葡萄糖产率仅下降了5%左右,说明接枝-NH2发挥了其通过静电作用固载PTA的功能,从而降低了PTA在反应过程中的流失。  相似文献   

5.
Designing excellent electrocatalysts for the hydrogen evolution reaction (HER) is extremely significant in producing clean and sustainable hydrogen fuel. Herein, a rational strategy is developed to fabricate a promising electrocatalyst by introducing atomically dispersed Ru into a cobalt-based metal-organic framework (MOF), Co-BPDC (Co(bpdc)(H2O)2, BPDC: 4,4'-Biphenyldicarboxylic acid). The obtained CoRu-BPDC nanosheet arrays exhibit remarkable HER performance with an overpotential of 37 mV at a current density of 10 mA cm−2 in alkaline media, which is superior to most of the MOF-based electrocatalysts and comparable to the commercial Pt/C. Synchrotron radiation-based X-ray absorption fine structure (XAFS) spectroscopy studies verify that the isolated Ru atoms are dispersed in Co-BPDC nanosheets with the formation of five-coordinated Ru-O5 species. XAFS spectroscopy combined with density functional theory (DFT) calculations unravels that atomically dispersed Ru can modulate the electronic structure of the as-obtained Co-BPDC, contributing to the optimization of binding strength for H* and the enhancement of HER performance. This work opens a new avenue to rationally design highly-active single-atom modified MOF-based HER electrocatalysts via modulating electronic structures of MOF.  相似文献   

6.
Covalent organic frameworks (COFs) are an emerging class of crystalline porous polymers with tailorable compositions, porosities, functionalities, and intrinsic chemical stability. The incorporation of electroactive moieties in the structure transforms COFs into electroactive materials with great potential for energy-related applications. Herein, the recent advances in the design and use of electroactive COFs as capacitors, batteries, conductors, fuel cells, water-splitting, and electrocatalysis are addressed. Their remarkable performance is discussed and compared with other porous materials; hence, perspectives in the development of electroactive COFs are presented.  相似文献   

7.
The controlled pyrolysis of metal/carbon-containing precursors is commonly used for fabricating multifunctional metal/carbon-based catalysts, nevertheless, the inevitable agglomeration of these precursors in pyrolysis is extremely negative for efficient catalysis. This study reports the first example of suppressing the interfacial fusion and agglomeration of metal/carbon-based catalyst in its pyrolysis-involved fabrication process by developing a facile morphology-engineering strategy. Metal-organic framework precursors are chosen as a proof of concept and five Co/N-doped hollow carbons with different morphologies (rhombic dodecahedron, cube, plate, interpenetration twin, and rod) are synthesized via the pyrolysis of their corresponding core-shell ZIF-8@ZIF-67 precursors. It is demonstrated that the interpenetration twin precursor shows the minimum interfacial contact of interparticles due to its partly-concave morphology with abundant facets, which endows it with the best resistibility from interfacial fusion and thus aggregation of interparticles during pyrolysis. Benefiting from its unique anti-aggregated structure with high specific surface area, abundant fully-exposed active sites, and good dispersibility, the resultant 36-facet Co/N-doped hollow carbon exhibit remarkably improved catalytic property for biomass upgrading as compared with its aggregated counterparts. This study highlights the crucial role of engineering morphology to prevent metal/carbon-containing precursors from detrimental agglomeration during pyrolysis, demonstrating a new approach to constructing anti-aggregated metal/carbon-based catalysts.  相似文献   

8.
多孔金属-有机络合聚合物结构特征与其吸附行为关系   总被引:1,自引:1,他引:0  
综述了近来出现的一类有前途的多孔材料--金属-有机络合聚合物(MOCPs)吸附功能的设计策略与合成途径.通过配体结构的选择或修饰可赋予MOCPs特定吸附性的孔环境;或采用适当的设计和合成策略使过渡金属离子和有机配体形成的骨架结构对特定吸附质分子具有特定的选择性.为新型的多孔吸附剂的设计与制备提供了一种新思路.  相似文献   

9.
Uranium extraction from natural seawater is one of the most promising routes to address the shortage of uranium resources. By combination of ligand complexation and photocatalytic reduction, porous framework-based photocatalysts have been widely applied to uranium enrichment. However, their practical applicability is limited by poor photocatalytic activity and low adsorption capacity. Herein, atomically dispersed Cu implanted UiO-66-NH2 (Cu SA@UiO-66-NH2) photocatalysts are prepared via ligand-assistant iced photocatalytic reduction route. N—Cu–N moiety acts as an effective electron acceptor to potentially facilitate charge transfer kinetics. By contrast, there exist Cu sub-nanometer clusters by the typical liquid phase photoreduction, resulting in a relatively low photocatalytic activity. Cu SA@UiO-66-NH2 adsorbents exhibit superior antibacterial ability and improved photoreduction conversion of the adsorbed U(VI) to insoluble U(IV), leading to a high uranium sorption capacity of 9.16 mg-U/g-Ads from natural seawater. This study provides new insight for enhancing uranium uptake by designing SA-mediated MOF photocatalysts.  相似文献   

10.
11.
Metal-organic frameworks (MOFs) are proved to be good precursors to derive various nanomaterials with desirable functions, but so far the controllable synthesis of ordered mesoporous derivatives from MOFs has not been achieved. Herein, this work reports, for the first time, the construction of MOF-derived ordered mesoporous (OM) derivatives by developing a facile mesopore-inherited pyrolysis-oxidation strategy. This work demonstrates a particularly elegant example of this strategy, which involves the mesopore-inherited pyrolysis of OM-CeMOF into a OM-CeO2@C composite, followed by the oxidation removal of its residual carbon, affording the corresponding OM-CeO2. Furthermore, the good tunability of MOFs helps to allodially introduce zirconium into OM-CeO2 to regulate its acid-base property, thus boosting its catalytic activity for CO2 fixation. Impressively, the optimized Zr-doped OM-CeO2 can achieve above 16 times higher catalytic activity than its solid CeO2 counterpart, representing the first metal oxide-based catalyst to realize the complete cycloaddition of epichlorohydrin with CO2 under ambient temperature and pressure. This study not only develops a new MOF-based platform for enriching the family of ordered mesoporous nanomaterials, but also demonstrates an ambient catalytic system for CO2 fixation.  相似文献   

12.
Organic–inorganic hybrid perovskite solar cells (PSCs) are among the most promising candidates for the next generation of photovoltaic devices because of the significant increase in their power conversion efficiency (PCE) from less than 10% to 25.7% in past decade. The metal-organic framework (MOF) materials owing to their unique properties, such as large specific surface area, abundant binding sites, adjustable nanostructures, and synergistic effects, are used as additives or functional layers to enhance the device performance and long-term stability of PSCs. This review focuses on the recent advancements in the applications of MOFs as/in different functional layers of PSCs. The photovoltaic performance, impact, and advantages of MOF materials integrated into the perovskite absorber, electron transport layer, hole transport layer, and interfacial layer are reviewed. In addition, the applicability of MOFs to mitigate leakage of Pb2+ from halide perovskites and corresponding devices is discussed. This review concludes with the perspectives on further research directions for employing MOFs in PSCs.  相似文献   

13.
叙述了温室气体监测用四氟化碳(CF4)标准气体气相色谱的实验方法和条件,给出了气相色谱分析方法的精密度和实验结果。该方法重现性好,分析结果准确可靠。  相似文献   

14.
Controllable modulation of the stacking modes of 2D (two-dimensional) materials can significantly influence their properties and functionalities but remains a formidable synthetic challenge. Here, an effective strategy is proposed to control the layer stacking of imide-linked 2D covalent organic frameworks (COFs) by altering the synthetic methods. Specifically, a modulator-assisted method can afford a COF with rare ABC stacking without the need for any additives, while solvothermal synthesis leads to AA stacking. The variation of interlayer stacking significantly influences their chemical and physical properties, including morphology, porosity, and gas adsorption performance. The resultant COF with ABC stacking shows much higher C2H2 capacity and selectivity over CO2 and C2H4 than the COF with AA stacking, which is not demonstrated in the COF field yet. Furthermore, the outstanding practical separation ability of ABC stacking COF is confirmed by breakthrough experiments of C2H2/CO2 (50/50, v/v) and C2H2/C2H4 (1/99, v/v), which can selectively remove C2H2 with good recyclability. This work provides a new direction to produce COFs with controllable interlayer stacking modes.  相似文献   

15.
Metal-organic framework (MOF) nanoparticles have recently emerged as a promising vehicle for drug delivery with high porosity and feasibility. However, employing a MOF-based drug delivery system remains a challenge due to the difficulty in controlling interfaces of particles in a biological environment. In this paper, protein corona-blocked Zr6-based MOF (PCN-224) nanoparticles are presented for targeted cancer therapy with high efficiency. The unmodified PCN-224 surface is precoated with glutathione transferase (GST)-fused targetable affibody (GST-Afb) proteins via simple mixing conjugations instead of chemical modifications that can induce the impairment of proteins. GST-Afb proteins are shown to stably protect the surface of PCN-224 particles in a specific orientation with GST adsorbed onto the porous surface and the GST-linked Afb posed outward, minimizing the unwanted interfacial interactions of particles with external biological proteins. The Afb-directed cell-specific targeting ability of particles and consequent induction of cell death is demonstrated both in vitro and in vivo by using two kinds of Afb, which targets the surface membrane receptor, human epidermal growth factor receptor 2 (HER2) or epidermal growth factor receptor (EGFR). This study provides insight into the way of regulating the protein-adhesive surface of MOF nanoparticles and designing a more effective MOF-hosted targeted delivery system.  相似文献   

16.
Membrane-based carbon dioxide (CO2) capture and separation technologies have aroused great interest in industry and academia due to their great potential to combat current global warming, reduce energy consumption in chemical separation of raw materials, and achieve carbon neutrality. The emerging covalent organic frameworks (COFs) composed of organic linkers via reversible covalent bonds are a class of porous crystalline polymers with regular and extended structures. The inherent structure and customizable organic linkers give COFs high and permanent porosity, short transport channel, tunable functionality, and excellent stability, thereby enabling them rising-star alternatives for developing advanced CO2 separation membranes. Therefore, the promising research areas ranging from development of COF membranes to their separation applications have emerged. Herein, this review first introduces the main advantages of COFs as the state-of-the-art membranes in CO2 separation, including tunable pore size, modifiable surfaces property, adjustable surface charge, excellent stability. Then, the preparation approaches of COF-based membranes are systematically summarized, including in situ growth, layer-by-layer stacking, blending, and interface engineering. Subsequently, the key advances of COF-based membranes in separating various CO2 mixed gases, such as CO2/CH4, CO2/H2, CO2/N2, and CO2/He, are comprehensively discussed. Finally, the current issues and further research expectations in this field are proposed.  相似文献   

17.
全球气候变化给人类生活带来的影响受到世界各国的普遍关注,温室气体是影响和改变全球气候的关键因素之一,限制和降低温室气体排放量成为人类发展的重要议题.温室气体大多都在10"(每百万个气体分子中所含该种气体分子的个数)级别,且气体分子结构差异大,因此传统方法很难获得较高的精度,而光腔衰荡光谱法是能解决该难题的关键技术之一....  相似文献   

18.
Covalent organic frameworks (COFs) are promising for catalysis, sensing, gas storage, adsorption, optoelectricity, etc. owning to the unprecedented combination of large surface area, high crystallinity, tunable pore size, and unique molecular architecture. Although COFs are in their initial research stage, progress has been made in the design and synthesis of COF‐based electrocatalysis for the oxygen reduction reaction, oxygen evolution reaction, hydrogen evolution reaction, and CO2 reduction in energy conversion and fuel generation. Design principles are also established for some of the COF materials toward rational design and rapid screening of the best electrocatalysts for a specific application. Herein, the recent advances in the design and synthesis of COF‐based catalysts for clean energy conversion and storage are presented. Future research directions and perspectives are also being discussed for the development of efficient COF‐based electrocatalysts.  相似文献   

19.
杨明莉  武凯  鲜学福 《功能材料》2006,37(11):1697-1699,1702
从配体的角度对中心离子与多齿配体间形成的稳定多孔金属-有机络合聚合物(MOCPs)的发展现状进行了综述.指出该材料自成为研究热点以来,各研究小组在对不同的构件分子进行组合构建新的MOCPs方面富有成效的工作,极大地丰富了络合聚合物的结构数据,但这种材料最引人注目的特性--孔及表面性质的可调控性及其对其各种应用特性,如分子识别、择形催化、择形吸附等所能带来的影响方面的研究还很不够.  相似文献   

20.
金属-有机骨架材料MOF-199对甲醛气体吸附行为的研究   总被引:1,自引:0,他引:1  
初步探讨了金属-有机骨架材料MOF-199对甲醛气体的吸附性能.采用分光光度法测定MOF-199对甲醛气体的吸附量,研究了吸附量与吸附温度及吸附时间的关系,并探讨了MOF-199对甲醛的吸附机理,提出了一种测定MOF-199对甲醛吸附量的方法.结果表明,在50℃、6h的吸附条件下,MOF-199对甲醛气体的吸附量最大,达到83.84mg/g;MOF-199对甲醛气体具有较好的吸附效果.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号