首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, a CO2 curing process was adopted in order to promote rapid strength development of concrete blocks containing recycled aggregates. The influence of several factors associated with the curing conditions on the curing degree and compressive strength of the concrete blocks were investigated, including curing time, temperature, relative humidity, pressure and post-water curing after the pressurized CO2 curing (PCC) process. In addition a flow-through CO2 curing (FCC) method at ambient pressure was also used. The results of the PCC experiments showed that, considerable curing degree and compressive strength were attained during the first 2 h of CO2 curing, and a prolonged curing time yielded slower gains. The variations of temperature from 20 °C to 80 °C and relative humidity from 50% to 80% had limited impacts on PCC; but the effects of CO2 gas pressure on the curing degree and compressive strength were more pronounced. The post-water curing after pressurized CO2 curing allowed the concrete blocks to attain further strength gain but its effectiveness was inversely proportional to the CO2 curing degree already attained. The FCC experimental results indicated that although a lower curing degree and slower strength development at the early age were observed, after 24 h of curing duration, they were comparable to those obtained by the PCC method. To assess the thermal stability of the concrete blocks, the optimum CO2 curing regime was adopted for preparing the concrete blocks with recycled aggregates, and the CO2 cured specimens exhibited better fire resistance than the water-cured ones at 800 °C.  相似文献   

2.
Steel slag has been used as supplementary cementitious materials or aggregates in concrete. However, the substitution levels of steel slag for Portland cement or natural aggregates were limited due to its low hydraulic property or latent volume instability. In this study, 60% of steel slag powders containing high free-CaO content, 20% of Portland cement and up to 20% of reactive magnesia and lime were mixed to prepare the binding blends. The binding blends were then used to cast concrete, in which up to 100% of natural aggregates (limestone and river sands) were replaced with steel slag aggregates. The concrete was exposed to carbonation curing with a concentration of 99.9% CO2 and a pressure of 0.10 MPa for different durations (1d, 3d, and 14d). The carbonation front, carbonate products, compressive strength, microstructure, and volume stability of the concrete were investigated. Results show that the compressive strength of the steel slag concrete after CO2 curing was significantly increased. The compressive strengths of concrete subjected to CO2 curing for 14d were up to five-fold greater than that of the corresponding concrete under conventional moist curing for 28d. This is attributed to the formation of calcium carbonates, leading to a microstructure densification of the concrete. Replacement of limestone and sand aggregates with steel slag aggregates also increased the compressive strengths of the concrete subjected to CO2 curing. In addition, the concrete pre-exposed to CO2 curing produced less expansion than the concrete pre-exposed to moist curing during the subsequent accelerated curing in 60 °C water. This study provides a potential approach to prepare concrete with low-carbon emissions via the accelerated carbonation of steel slag.  相似文献   

3.
An alternative CO2 curing method for precast concrete products has been proposed in order to achieve rapid strength development at early age, as well as to capture and store greenhouse gas (CO2). In this paper, an experimental study for the development of a maturity approach is presented to estimate the strength development of carbonated concrete blocks. In order to promote the use of industrial flue gas containing CO2, a flow-through CO2 curing regime at ambient pressure and temperature was employed using different atmospheric conditions, such as various CO2 concentrations, RH values and gas flow rates. The experimental results showed that the compressive strength or maturity of the carbonated concrete blocks was affected by two factors: accelerated cement hydration and carbonation extent. A high CO2 concentration, a fast gas flow rate and a moderate relative humidity were essential for enhancing the maturity and the strength development. The developed model based on the maturity approach may accurately predict the strength development of the carbonated concrete blocks.  相似文献   

4.
Strengthening the attached old cement mortar of recycled concrete aggregate (RCA) is a common approach to enhance the RCA properties. Accelerated CO2 curing has been regarded as an alternative way to enhance the properties of RA. However, the improvement of the properties of RCA was limited by the shortage of reactive components in the old cement mortar available for the carbonation reactions. In this study, a CO2 curing process associated with a limewater saturation method was performed cyclically on cement mortar samples, aiming to enhance the properties of cement mortars via artificially introducing additional calcium into the pores of the cement mortars. The results indicated that the adopted treatment method promoted the level of carbonation which was demonstrated by higher CO2 uptake by the limewater saturated cement mortar when compared to that without limewater treatment. After 3-cycles of limewater-CO2 treatment, the density of the cement mortar slightly increased by 5.7%, while the water absorption decreased by over a half. For mechanical properties, the compressive and flexural strength were increased by 22.8% and 42.4%, respectively. Compared to the untreated cement mortar samples, the total porosity of cement mortar was reduced by approximately 33% and the densified microstructure therefore resulted in a higher microhardness.  相似文献   

5.
This study aims to investigate the effects of further water curing on the compressive strength and microstructure of CO2-cured concrete. The results showed that concrete with a residual w/c ratio of 0.25 showed the most rapid strength development rate upon further water curing due to hydration of uncarbonated cement particles. Thermogravimetric, IR-spectrophotometric and scanning electron microscope examinations indicated that further hydration of the cement particles could form C-S-H gel and ettringite crystals. The results showed that the calcite formed during the initial CO2 curing was consumed during the further hydration of C3A, and produced calcium monocarbonaluminate hydrate. Also, Ca(OH)2 was not detected due to its reaction with the formed silica gel. Mercury intrusion porosimetry test results indicated that the porosity and pore size of the CO2 cured mortar decreased further after water curing.  相似文献   

6.
The effects of the use of Class F fly ash as a cement addition on the hardened properties of recycled aggregate concrete were determined. In this study, four series of concrete mixtures were prepared with water-to-cement (w/c) ratios of 0.55, 0.50, 0.45 and 0.40. The recycled aggregate was used as 0%, 20%, 50% and 100% replacements of coarse natural aggregate. Furthermore, fly ash was employed as 0% and 25% addition of cement. Although the use of recycled aggregate had a negative effect on the mechanical properties of concrete, it was found that the addition of fly ash was able to mitigate this detrimental effect. Also, the addition of fly ash reduced the drying shrinkage and enhanced the resistance to chloride ion penetration of concrete prepared with recycled aggregate. Moreover, it was found that the drying shrinkage and chloride ion penetration decreased as the compressive strength increased. Compared with the results of our previous study, the present study has quantified the advantages of using fly ash as an additional cementitious material in recycled aggregate concrete over the use of fly use as a replacement of cement.  相似文献   

7.
Research and development of low CO2 binders for building material applications is warranted in efforts to reduce the negative environmental impacts associated with the cement and concrete industry. The purpose of this study is to investigate the effect of carbonation curing on the mineralogy, morphology, microstructure and evolution of compressive strength of mortars comprised of general use (GU) cement, ground granulated blast furnace slag (GGBFS), and reactive MgO used as cement replacement. This study investigates binary (GU–MgO) and ternary (GU–GGBFS–MgO) blends exposed to atmosphere curing (0.0038%CO2) and carbonation curing (99.9%CO2). Carbonation-cured mortars exhibited greater compressive strengths than atmosphere mortars at all ages (7 d, 28 d, and 56 d). Increasing percentages of reactive MgO decreased the compressive strength markedly less for carbonation-cured mortars than atmosphere-cured mortars particularly due to magnesium calcite formations. Magnesium calcite influenced the morphology of carbonates and promoted the carbonate agglomeration resulting in a dense and interconnected microstructure.  相似文献   

8.
The effect of carbonation curing on the mechanical properties and microstructure of concrete masonry units (CMU) with Portland limestone cement (PLC) as binder was examined. Slab samples, representing the web of a CMU, were initially cured at 25 °C and 50% relative humidity for durations up to 18 h. Carbonation was then carried out for 4 h in a chamber at a pressure of 0.1 MPa. Based on Portland limestone cement content, CO2 uptake of PLC concrete after 18 h of initial curing reached 18%. Carbonated and hydrated concretes showed comparable compressive strength at both early and late ages due to the 18-h initial curing. Carbonation reaction converted early hydration products to a crystalline microstructure and subsequent hydration transformed amorphous carbonates into more crystalline calcite. Portland limestone cement could replace Ordinary Portland Cement (OPC) in making equivalent CMUs which have shown similar carbon sequestration potential.  相似文献   

9.
This paper investigates properties of calcium aluminate cement (CAC) mortar modified with the styrene–butadiene-rubber (SBR) latex. This material may be advantageously applied as a rapid repair mortar. Mortar specimens were prepared with constant water-to-cement mass ratio; polymer solid content of latex was varied from 0% to 9%, and Li2CO3 was investigated as an accelerator. Specimens were treated at different curing conditions: 1, 7 days and transformation of metastable hydration products at 70 °C. The heat of hydration evolution of mortar specimens was measured by means of a self adopted isoperibol calorimeter.The measurement results indicate that SBR latex improves workability of fresh state mortar and retards nucleation and growth of hydration products. Due to polymer coagulation process and co-matrix formation permeability, stiffness and compressive strength decrease while adhesion strength to old concrete substrate, and flexural strength increase with amount of added latex.  相似文献   

10.
In this research, the properties of lightweight geopolymer concrete containing aggregate from recycle lightweight block were studied. The recycle block was crushed and classified as fine, medium and coarse aggregates. The compressive strength and density with various liquid alkaline/ash ratios, sodium silicate/NaOH ratios, NaOH concentrations, aggregate/ash ratios and curing temperatures were tested. In addition, porosity, water absorption, and modulus of elasticity were determined. Results showed that the lightweight geopolymer blocks with satisfactory strength and density could be made. The 28-day compressive strength of 1.0–16.0 MPa, density of 860–1400 kg/m3, water absorption of 10–31% and porosity of 12–34%, and modulus of elasticity of 2.9–9.9 GPa were obtained. It can be used as lightweight geopolymer concrete for wall and partition.  相似文献   

11.
The possibility of producing a reactive powder concrete (RPC) with low cement content was aimed in the scope of this study. Cement was replaced with class-C fly ash (FA) up to 60% for this purpose. Three different curing conditions (standard water curing, autoclave curing and steam curing) were applied to specimens. Two series of RPC composites were prepared with bauxite and granite aggregates. Mechanical properties such as compressive strength, splitting tensile strength, flexural strength and fracture energy of composites were investigated. Test results showed that, compressive strength of 200 MPa can be reached with low cement by using high-volume fly ash. Thermally treated specimens showed compressive strength beyond 250 MPa and high volume fly ash RPC have superior performance. Furthermore, compressive strength values reached up to 400 MPa with external pressure application during setting and hardening stages.  相似文献   

12.
《Composites Part B》2013,44(8):2907-2914
The possibility of producing a reactive powder concrete (RPC) with low cement content was aimed in the scope of this study. Cement was replaced with class-C fly ash (FA) up to 60% for this purpose. Three different curing conditions (standard water curing, autoclave curing and steam curing) were applied to specimens. Two series of RPC composites were prepared with bauxite and granite aggregates. Mechanical properties such as compressive strength, splitting tensile strength, flexural strength and fracture energy of composites were investigated. Test results showed that, compressive strength of 200 MPa can be reached with low cement by using high-volume fly ash. Thermally treated specimens showed compressive strength beyond 250 MPa and high volume fly ash RPC have superior performance. Furthermore, compressive strength values reached up to 400 MPa with external pressure application during setting and hardening stages.  相似文献   

13.
In this research work, High Performance Concrete (HPC) was produced employing 30% of fly ash and 70% of Portland cement as binder materials. Three types of coarse recycled concrete aggregates (RCA) sourced from medium to high strength concretes were employed as 100% replacement of natural aggregates for recycled aggregate concrete (RAC) production. The specimens of four types of concretes (natural aggregate concrete (NAC) and three RACs) were subjected to initial steam curing besides the conventional curing process. The use of high quality RCA (>100 MPa) in HPC produced RAC with similar or improved pore structures, compressive and splitting tensile strengths, and modulus of elasticity to those of NAC. It was determined that the mechanical and physical behaviour of HPC decreased with the reduction of RCA quality. Nonetheless steam-cured RACs had greater reductions of porosity up to 90 days than NAC, which led to lower capillary pore volume.  相似文献   

14.
Influence of field recycled coarse aggregate on properties of concrete   总被引:1,自引:0,他引:1  
This paper investigates the influence of different amounts of recycled coarse aggregates obtained from a demolished RCC culvert 15 years old on the properties of recycled aggregate concrete (RAC). A new term called “coarse aggregate replacement ratio (CRR)” is introduced and is defined as the ratio of weight of recycled coarse aggregate to the total weight of coarse aggregate in a concrete mix. To analyze the behaviour of concrete in both the fresh and hardened state, a coarse aggregate replacement ratio of 0, 0.25, 0.50 and 1.0 are adopted in the concrete mixes. The properties namely compressive and indirect tensile strengths, modulus of elasticity, water absorption, volume of voids, density of hardened concrete and depth of chloride penetration are studied. From the experimental results it is observed that the concrete cured in air after 7 days of wet curing shows better strength than concrete cured completely under water for 28 days for all coarse aggregate replacement ratios. The volume of voids and water absorption of recycled aggregate concrete are 2.61 and 1.82% higher than those of normal concrete due to the high absorption capacity of old mortar adhered to recycled aggregates. The relationships among compressive strength, tensile strengths and modulus of elasticity are developed and verified with the models reported in the literature for both normal and recycled aggregate concrete. In addition, the non-destructive testing parameters such as rebound number and UPV (Ultrasonic pulse velocity) are reported. The study demonstrates the potential use of field recycled coarse aggregates (RCA) in concrete.  相似文献   

15.
史才军  曹芷杰  谢昭彬 《材料导报》2016,30(23):96-103, 126
再生混凝土的应用,不仅能够解决废弃混凝土处理问题;又能降低因资源过度开采所引起的生态环境破坏,因而具有广阔的发展前景。相比于普通混凝土,再生混凝土的抗压强度、弹性模量以及抗疲劳性能较低,主要与再生骨料多方面因素的影响有关。对近年来再生混凝土力学性能相关研究进展进行了综述,再生骨料总吸水率是降低抗压强度的主要原因,疲劳性能则主要与再生骨料取代率和附着砂浆含量有关。在再生混凝土中掺加矿物掺合料能够改善新、旧双界面从而提高抗压强度和劈裂抗拉强度,掌握多个因素的影响和作用对再生骨料和再生混凝土进一步研究和应用具有重要意义。  相似文献   

16.
Acceleration on the carbonation of reactive MgO cement is essential for its widespread application. There is currently a dearth of published reports on the effect and sensitivity of using pressurized CO2 on the properties and performance of reactive MgO cement blends. This study is motivated by improving the understanding of the effectiveness of accelerating the carbonation process. Pressurized CO2 (up to 1.0 MPa) was employed to enhance the carbonation of mortar blends consisting of Portland cement, fly ash and reactive MgO. Results revealed that the carbonation front and mechanical properties of the mortars were developed quickly owing to the effectively accelerated carbonation under pressurized CO2. In comparison to the 0.1 MPa pressure, the relatively higher pressure (0.55 and 1.0 MPa) were much more effective in achieving stronger mechanical properties within 1 day. However, an increasing curing duration from 1d to 14d under the lower CO2 pressure of 0.1 MPa caused a 1.8–2.9 times increase in compressive strength. This indicates that either increases in pressure or curing duration under pressurized CO2 enhances the carbonation and mechanical properties of the mortars.  相似文献   

17.
The paper describes the physicochemical processes of concrete carbonation and presents a simple mathematical model for the evolution of carbonation in time, applicable under constant relative humidity higher than 50%. The model is based on fundamental principles of chemical reaction engineering, and uses as parameters the ambient concentration of CO2, the molar concentratrations of the carbonatable constituents, Ca(OH)2 and CSH, in the concrete volume, and the effective diffusivity of CO2 in carbonated concrete. The latter is given by an empirical function of the porosity of hardened cement paste and of relative humidity, derived from laboratory diffusion tests. The validity of the model for OPC or pozzolanic cement concretes and mortars is demonstrated by comparison of its predictions with accelerated carbonation test results obtained in an environment of controlled CO2 concentration, humidity and temperature. The mathematical model is extended to cover the case of carbonation of the coating-concrete system, for concrete coated with a cement-lime mortar finish, applied either almost immediately after the end of concrete curing or with a delay of a certain time. Parametric studies are performed to show how the evolution of carbonation depth with time is affected by cement and concrete composition (water/cement or aggregate/cement ratio, percentage OPC or aggregate replacement by a pozzolan), environmental factors (relative humidity, ambient concentration of CO2), the presence and the time of application of a lime-cement mortar coating and its composition (water/cement, aggregate/cement and lime/cement ratios of the mortar, percentage OPC or aggregate replacement by a pozzolan).  相似文献   

18.
An experiment was performed to investigate the properties of the hardened paste of fly ash by alkali activation and to determine the possible use of the paste in the production of lightweight aggregates. The highest compressive strength was 33.9 MPa, for paste with 10% NaOH, 15% sodium silicate, and 5% MnO2, cured at room temperature after 24 h of moisture curing at 50 °C. The hardened paste of fly ash was granulated to produce AFLA (alkali-activated fly ash lightweight aggregate). AFLA exhibited specific gravity (SSD, OD), water absorption, unit weight, and solid volume percentages of 1.85 (SSD), 1.66 (OD), 11.8%, 972 kg/m3, and 58.6%, respectively. The results of the heavy metals leaching test met US EPA regulations. The concrete using AFLA exhibited a compressive strength of 26.47 MPa and good freeze–thaw resistance at 6.0% entrained air content.  相似文献   

19.
This paper discusses the development of empirical models for workability and compressive strength of cold-bonded fly ash aggregate concrete in terms of mixture proportioning variables such as cement content, water content and volume fraction of cold-bonded aggregate through statistically designed experiments based on Response Surface Methodology. Factor level of cement is taken from 250 to 450 kg/m3 to introduce weak as well as strong matrix phase in the concrete. Apart from water content, workability of concrete is highly influenced by main and interaction effect of volume fraction of cold-bonded aggregate in the composition. Response surface indicate that increase in cement content causes to change the predominant failure mode from mortar failure to aggregate fracture and concrete strength decreases with increase in volume fraction of aggregate at higher cement contents. The models developed have been found useful in arriving typical relationship to establish a mixture proportioning methodology for cold-bonded fly ash aggregate concrete.  相似文献   

20.
To secure good flowability and workability of SCC, the volume fraction of coarse aggregate keep at an extremely low level. A new kind of SCC pouring method named scattering-filling coarse aggregate process was invented: it was method to scatter 20% (volume fraction to the finished concrete) of extra coarse aggregate into the fresh SCC mixture to replace the fresh concrete mixture while the concrete was pouring. A high strength (82 MPa) SCC just composing 360 kg/m3 cement and 120 kg/m3 class F fly ash was prepared with this process. With an increase of the extra coarse aggregate replacing ratio from 0 to 30%, the compressive strength of SCC increased steadily and reached a peak value when this ratio is 20%, then the strength dropped sharply. The drying shrinkage ratio and the chloride ion permeability decreased with the increase of that ratio. The scattering-filling coarse aggregate process can cast high strength SCC with lower cementitious materials content and produce concrete with better performance than the ordinary process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号